Skip to main content

Plant Proton Pumps: Regulatory Circuits Involving H+-ATPase and H+-PPase

  • Chapter
  • First Online:
Transporters and Pumps in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 7))

Abstract

Proton gradients are crucial for the transport of ions and solutes across the different membranes in plant cells. Several important developmental processes require a tightly controlled proton gradient across cellular membranes. This chapter focuses on two of the three primary proton transport proteins: the plasma membrane H+-ATPase and the H+-PPase.

This chapter is divided into two sections. The first section describes the state of plasma membrane H+-ATPase research,with emphasis on the regulation by physiological stimuli, and proposes a novel mechanism of H+-ATPase regulation. The second section focuses on the H+-PPase and new evidence consistent with the involvement of H+-PPases in plant growth and development. A hypothetical model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandersson E, Saalbach G, Larsson C, Kjellbom P (2004) Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol 45:1543–1556

    PubMed  CAS  Google Scholar 

  • Au KM, Barabote RD, Hu KY, Saier MHJ (2006) Evolutionary appearance of H+-translocating pyrophosphatases. Microbiology 152(Pt 5):1243–1247

    PubMed  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46(1):84–101

    PubMed  CAS  Google Scholar 

  • Axelsen KB, Venema K, Jahn T, Baunsgaard L, Palmgren MG (1999) Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: mapping of residues that when altered give rise to an activated enzyme. Biochemistry 38(22):7227–7234

    PubMed  CAS  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett 452:121–127

    PubMed  CAS  Google Scholar 

  • Bao A-K, Wang S-M, Wu G-Q, Xi J-J, Zhang J-L, Wang C-M (2008) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Google Scholar 

  • Batistic O, Sorek N, Schultke S, Yalovsky S, Kudla J (2008) Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20(5):1346–1362

    PubMed  CAS  Google Scholar 

  • Belogurov GA, Lahti R (2002) A lysine substitute for K+. J Biol Chem 277(51):49651–49654

    PubMed  CAS  Google Scholar 

  • Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    PubMed  CAS  Google Scholar 

  • Cleland RE (1995) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 214–217

    Google Scholar 

  • Coblitz B, Shikano S, Wu M, Gabelli SB, Cockrell LM, Spieker M, Hanyu Y, Fu H, Amzel LM, Li M (2005) C-terminal recognition by 14-3-3 proteins for surface expression of membrane receptors. J Biol Chem 280(43):36263–36272

    PubMed  CAS  Google Scholar 

  • Davies JM, Darley CP, Sanders D (1997) Energetics of the plasma membrane pyrophosphatase. Trends Plant Sci 2:9–10

    Google Scholar 

  • Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ (2005) Acidocalcisomes – conserved from bacteria to man. Nat Rev Microbiol 3:251–261

    PubMed  CAS  Google Scholar 

  • Drozdowicz YM, Lu YP, Patel V, Fitz-Gibbon S, Miller JH, Rea PA (1999) A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Lett 460(3):505–512

    PubMed  CAS  Google Scholar 

  • Drozdowicz YM, Kissinger JC, Rea PA (2000) AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol 123:353–362

    PubMed  CAS  Google Scholar 

  • Drozdowicz YM, Shaw M, Nishi M, Striepen B, Liwinski HA, Roos DS, Rea PA (2003) Isolation and characterization of TgVP1, a type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii. The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. J Biol Chem 278(2):1075–1085

    PubMed  CAS  Google Scholar 

  • Duby G, Boutry M (2009) The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflügers Arch Eur J Physiol 457(3):645–655

    CAS  Google Scholar 

  • Duby G, Poreba W, Piotrowiak D, Bobik K, Derua R, Waelkens E, Boutry M (2009) Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. J Biol Chem 284(7):4213–4221

    PubMed  CAS  Google Scholar 

  • Ekberg K, Palmgren MG, Veierskov B, Buch-Pedersen MJ (2010) A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein. J Biol Chem 285(10):7344–7350

    PubMed  CAS  Google Scholar 

  • Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002) Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiol Plant 114(2):259–270

    PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55(396):285–293

    PubMed  CAS  Google Scholar 

  • Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B, Jensen ON, Aducci P, Palmgren MG (1999) Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J Biol Chem 274(51):36774–36780

    PubMed  CAS  Google Scholar 

  • Fuglsang AT, Borch J, Bych K, Jahn TP, Roepstorff P, Palmgren MG (2003) The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. J Biol Chem 278(43):42266–42272

    PubMed  CAS  Google Scholar 

  • Fuglsang AT, Tulinius G, Cui N, Palmgren MG (2006) Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein. Physiol Plant 128(2):334–340

    CAS  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA, Qiu QS, Song CP, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19(5):1617–1634

    PubMed  CAS  Google Scholar 

  • Gao F, Gao Q, Duan XG, Yue GD, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57(12):3259–3270

    PubMed  CAS  Google Scholar 

  • Gaxiola R, Li J, Undurraga S, Dang L, Allen G, Alper S, Fink G (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    PubMed  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581(12):2204–2214

    PubMed  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    CAS  Google Scholar 

  • Gordon-Weeks SH, Steele RA, Leigh RA (1996) The role of magnesium, pyrophosphate, and their complex as substrate and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Plant Physiol 11:195–202

    Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu J-K (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13(6):1383–1400, %R 10.1105/tpc.13.6.1383

    PubMed  CAS  Google Scholar 

  • Haruta M, Burch HL, Nelson RB, Barrett-Wilt G, Kline KG, Mohsin SB, Young JC, Otegui MS, Sussman MR (2010) Molecular characterization of mutant Arabidopsis plants with reduced plasma membrane proton pump activity. J Biol Chem 285(23):17918–17929

    PubMed  CAS  Google Scholar 

  • Jahn TP, Schulz A, Taipalensuu J, Palmgren MG (2002) Post-translational modification of plant plasma membrane H+-ATPase as a requirement for functional complementation of a yeast transport mutant. J Biol Chem 277(8):6353–6358, %R 10.1074/jbc.M109637200

    PubMed  CAS  Google Scholar 

  • Jha D, Shirley N, Tester M, Roy SJ (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes,linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell Environ 33:793–804. doi:10.1111/j.1365-3040.2009.02105.x

    PubMed  CAS  Google Scholar 

  • Jiang SS, Yang SJ, Kuo SY, Pan RL (2000) Radiation inactivation analysis of H+-pyrophosphatase from submitochondrial particles of etiolated mung beanseedlings. FEBS Lett 468(2–3):211–214

    PubMed  CAS  Google Scholar 

  • Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M, Rogers SW, Rogers JC (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155(6):991–1002

    PubMed  CAS  Google Scholar 

  • Kim EJ, Zhen RG, Rea PA (1994) Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc Natl Acad Sci USA 91(13):6128–6132

    PubMed  CAS  Google Scholar 

  • Kim EJ, Zhen RG, Rea PA (1995) Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem 270(6):2630–2635

    PubMed  CAS  Google Scholar 

  • Kim H-S, Grotz N, Parson B, Colangelo E, Atkinson AE, Hibbard S, Gehl M, Woelbel AM, Clark S, Maser P, Gong J, Gierth M, Lahner B, Mahmoudian M, Fana F, Nair M, Podell S, Tchieu J, Veretnik S, Schulz P (2005) The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. PNAS 102(18):6496–6501

    Google Scholar 

  • Kinoshita T, Shimazaki K (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18(20):5548–5558

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Emi T, Tominaga M, Sakamoto K, Shigenaga A, Doi M, Shimazaki K-I (2003) Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol 133(4):1453–1463

    PubMed  CAS  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134(1):43–58

    PubMed  CAS  Google Scholar 

  • Krebs M, Beyhl D, Gorlich E, Al-Rasheid AS, Marten I, Stierhof YD, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA 107:3251–3256

    PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    PubMed  CAS  Google Scholar 

  • Kuo SY, Chien LF, Hsiao YY, Van Ru C, Yan KH, Liu PF, Mao SJ, Pan RL (2005) Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings. J Plant Physiol 162(2):129–138

    PubMed  CAS  Google Scholar 

  • Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143(1):461–472

    PubMed  CAS  Google Scholar 

  • Langhans M, Ratajczak R, Lutzelschwab M, Michalke W, Wachter R, Fischer-Schliebs E, Ullrich CI (2001) Immunolocalization of plasma-membrane H+-ATPase and tonoplast-type pyrophosphatase in the plasma membrane of the sieve element-companion cell complex in the stem of Ricinus communis L. Planta 213:11–19

    PubMed  CAS  Google Scholar 

  • Lerchl J, Giegenberger P, Stitt M, Sonnewald U (1995) Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell 7:259–270

    PubMed  CAS  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Mariya K, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310(5745):121–125

    PubMed  CAS  Google Scholar 

  • Li L, Kim B-G, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103(33):12625–12630

    PubMed  CAS  Google Scholar 

  • Li B, Wei A, Song C, Li N, Zhang JR (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6:146–159

    PubMed  CAS  Google Scholar 

  • Li Z, Baldwin CM, Hu Q, Liu H, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33:272–289

    PubMed  CAS  Google Scholar 

  • Lin HH, Pan YJ, Hsu SH, Van RC, Hsiao YY, Chen JH, Pan RL (2005) Deletion mutation analysis on C-terminal domain of plant vacuolar H+-pyrophosphatase. Arch Biochem Biophys 442(2):206–213

    PubMed  CAS  Google Scholar 

  • Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G (2009a) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 7(6):e1000139

    PubMed  Google Scholar 

  • Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL (2009b) The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique. FEBS J 276(16):4381–4394

    PubMed  CAS  Google Scholar 

  • Liu Q, Zhang Q, Burton RA, Shirley NJ, Atwell BJ (2010) Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol Biol 72(1–2):47–60

    PubMed  CAS  Google Scholar 

  • Loewus FA, Murphy PP (2000) Myo-inositol metabolism in plants. Plant Sci 150:1–19

    CAS  Google Scholar 

  • Long AR, Williams LE, Nelson SJ, Hall JL (1995) Localization of membrane pyrophosphatase activity in Ricinus communis seedlings. J Plant Physiol 146:629–638

    CAS  Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang JR (2008) Overexpression of an H+-PPase Gene from Thellungiella halophila in cotton enhances salt tolernace and improves growth and photosynthetic performance. Plant Cell Physiol 49(8):1150–1164

    PubMed  CAS  Google Scholar 

  • Lv S-L, Lian L-J, Tao P-L, Li Z-X, Zhang K-W, Zhang J-R (2009) Overexpression of Thellungiella halophila H+-PPase (TSVP) in cotton enhances drought stress resistance of plants. Planta 299(4):899–910

    Google Scholar 

  • Mackey D, Holt B, Wiig A, Dangl J (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108(6):743–754

    PubMed  CAS  Google Scholar 

  • Maddy AH (1976) A critical evaluation of the analysis of membrane protein by polycrylamide gel electrophoresis in the presence of SDS. J Theor Biol 62:315–326

    PubMed  CAS  Google Scholar 

  • Maeshima M (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles: inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem 196:11–17

    PubMed  CAS  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    PubMed  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol 52:469–497

    CAS  Google Scholar 

  • Marten H, Hedrich R, Roelfsema M (2007) Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner. Plant J 50(1):29–39

    PubMed  CAS  Google Scholar 

  • Martinoa E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58(1):83–102

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He S (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980

    PubMed  CAS  Google Scholar 

  • Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26(13):3216–3226

    PubMed  CAS  Google Scholar 

  • Mimura H, Nakanishi Y, Maeshima M (2005) Disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor and its implications for redox control and enzyme structure. FEBS Lett 579:3625–3631

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Enami K, Nakata M, Takeyasu K, Sato MH (2001a) Novel type Arabidopsis thaliana H+-PPase is localized to the golgi apparatus. FEBS Lett 488:29–33

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Takeyasu K, Sato MH (2001b) Pollen-specific regulation of vacuolar H+-PPase expression by multiple cis-acting elements. Plant Mol Biol 46:185–192

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Isono T, Sato MH (2003) Arabidopsis CAMTA family proteins enhance V-PPase expression in pollen. Plant Cell Physiol 44(10):975–981

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Hisabori T, Takeyasu K, Sato MH (2004) VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zink finger from Arabidopsis thaliana. Plant Cell Physiol 45(7):845–854

    PubMed  CAS  Google Scholar 

  • Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276(10):7654–7660

    PubMed  CAS  Google Scholar 

  • Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6(10):1711–1726

    PubMed  CAS  Google Scholar 

  • Nolte KD, Koch KE (1993) Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101:899–905

    PubMed  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2(11):1234–1243

    PubMed  Google Scholar 

  • Nuhse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51(5):931–940

    PubMed  CAS  Google Scholar 

  • Oberbeck K, Drucker M, Robinson DG (1994) V-type ATPase and pyrophosphatase in endomembranes of maize roots. J Exp Bot 45:235–244

    CAS  Google Scholar 

  • Oecking C, Jaspert N (2009) Plant 14-3-3 proteins catch up with their mammalian orthologs. Curr Opin Plant Biol 12(6):760–765

    PubMed  CAS  Google Scholar 

  • Olsson A, Svennelid F, Ek B, Sommarin M, Larsson C (1998) A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding. Plant Physiol 118(2):551–555

    PubMed  CAS  Google Scholar 

  • Palma DA, Blumwald E, Plaxton WC (2000) Upregulation of vacuolar H+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures. FEBS Lett 486:155–158

    PubMed  CAS  Google Scholar 

  • Palmgren MG, Larsson C, Sommarin M (1990) Proteolytic activation of the plant plasma membrane H+-ATPase by removal of a terminal segment. J Biol Chem 265(23):13423–13426

    PubMed  CAS  Google Scholar 

  • Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139(3):1194–1206

    PubMed  CAS  Google Scholar 

  • Pedersen B, Buch-Pedersen M, Morth J, Palmgren M, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450(7172):1111–1114

    PubMed  CAS  Google Scholar 

  • Priest HD, Filichkin SA, Mockler TC (2009) Cis-regulatory elements in plant signaling. Curr Opin Plant Biol 12:643–649

    PubMed  CAS  Google Scholar 

  • Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99(12):8436–8441, %R 10.1073/pnas.122224699

    PubMed  CAS  Google Scholar 

  • Quintero FJ, Masaru O, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99(13):9061–9066

    PubMed  CAS  Google Scholar 

  • Ratajczak R, Hinz G, Robinson DG (1999) Localization of pyrophosphatase in membranes of cauliflower inflorescence cells. Planta 208:205–211

    PubMed  CAS  Google Scholar 

  • Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Saunders D (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci 17(9):348–353

    PubMed  CAS  Google Scholar 

  • Robinson DG, Haschke HP, Hinz G, Hoh G, Maeshima M, Marty F (1996) Immunological detection of tonoplast polypeptide in the plasma membrane of pea cotyledon. Planta 198:95–103

    CAS  Google Scholar 

  • Rocha Facanha A, de Meis L (1998) Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495

    PubMed  Google Scholar 

  • Roelfsema MRG, Staal M, Prins HBA (1998) Blue light induced apoplastic acidification of Arabidopsis thaliana guard cells: Inhibition by ABA is mediated through protein phosphatases. Physiol Plant 103(4):466–474

    CAS  Google Scholar 

  • Sarafian V, Kim Y, Poole R, Rea P (1992) Molecular cloning and sequence of cDNA Encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana.. Proc Natl Acad Sci USA 89:1775–1779

    PubMed  CAS  Google Scholar 

  • Seufferheld M, Lea CR, Viera M, Oldfield E, Docampo R (2004) The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J Biol Chem 279:51193–51202

    PubMed  CAS  Google Scholar 

  • Shikano S, Coblitz B, Sun H, Li M (2005) Genetic isolation of transport signals directing cell surface expression. Nat Cell Biol 7(10):985–992

    PubMed  CAS  Google Scholar 

  • Shimazaki K, Doi M, Assmann S, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    PubMed  CAS  Google Scholar 

  • Shiratake K, Kanayama Y, Maeshima M, Yamaki S (1997) Changes in H+-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol 38(9):1039–1045

    PubMed  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgreen MG (2004) Energization of transport processes in plants. roles of the plasma membrane H+-.ATPase. Plant Physiol 136:2475–2482

    PubMed  CAS  Google Scholar 

  • Sonnewald U (1992) Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant J 2:571–581

    PubMed  CAS  Google Scholar 

  • Srivastava AC, Ganesan S, Ismail IO, Ayre BG (2008) Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol 148:200–211

    PubMed  CAS  Google Scholar 

  • Stitt M (1998) Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Bot Acta 111:167–175

    CAS  Google Scholar 

  • Sullivan S, Thomson CE, Kaiserli E, Christie JM (2009) Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett 583:2187–2193

    PubMed  CAS  Google Scholar 

  • Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C, Oecking C, Sommarin M (1999) Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein. Plant Cell 11(12):2379–2391

    PubMed  CAS  Google Scholar 

  • Takeshige K, Tazawa M, Hager A (1988) Characterization of the H translocating adenosine triphosphatase and pyrophosphatase of vacuolar membranes isolated by means of a perfusion technique from Chara corallina. Plant Physiol 86(4):1168–1173

    PubMed  CAS  Google Scholar 

  • Terrier N, Deguillous C, Romieu C (1997) V-ATPase, inorganic pyrophosphatase and and anion transport on the tonoplast grape berries (Vitis viniferaL.). Plant Physiol Biochem 36:79–193

    Google Scholar 

  • Terrier N, Sauvage FX, Ageorges A, Romieu C (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213(1):20–28

    PubMed  CAS  Google Scholar 

  • Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009) Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin, Plant Cell Environ 32(5):465–475

    PubMed  CAS  Google Scholar 

  • Tominaga M, Harada A, Kinoshita T, Shimazaki K-I (2010) Biochemical characterization of calcineurin B-like-interacting protein kinase in vicia guard cells. Plant Cell Physiol 51(3):408–421

    PubMed  CAS  Google Scholar 

  • Tseng T-S, Briggs WR (2010) The Arabidopsis rcn1-1 mutation impairs dephosphorylation of Phot2, resulting in enhanced blue light responses. Plant Cell 22(2):392–402

    PubMed  CAS  Google Scholar 

  • Tzeng CM, Yang CY, Yang SJ, Jiang SS, Kuo SY, Hung SH, Ma JT, Pan RL (1996) Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem J 316(1):143–147

    PubMed  CAS  Google Scholar 

  • Ueno K, Kinoshita T, Inoue S-I, Emi T, Shimazaki K-I (2005) Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol 46(6):955–963, %R 10.1093/pcp/pci104

    PubMed  CAS  Google Scholar 

  • Van RC, Pan YJ, Hsu SH, Huang YT, Hsiao YY, Pan RL (2005) Role of transmembrane segement 5 of the plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1709:84–94

    PubMed  CAS  Google Scholar 

  • Vianello A, Zancani M, Biardot E, Petrussa E, Macri F (1991) Proton pumping inorganic pyrophosphatase of pea stem submitochondrial particles. Biochim Biophys Acta 1060:299–302

    CAS  Google Scholar 

  • Wang HJ, Wan AR, Hsu CM, Lee KW, Yu SM, Jauh GY (2007) Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol 63(4):441–463

    PubMed  CAS  Google Scholar 

  • Weber E, Newman D (1980) Protein storage bodies organelles in plant seeds. Biochem Physiol Pflanz 175:279–306

    CAS  Google Scholar 

  • Whiteman SA, Nuhse TS, Ashford DA, Sanders D, Maathuis FJM (2008) A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 56(1):146–156

    PubMed  CAS  Google Scholar 

  • Wisniewski J-P, Rogowsky PM (2004) Vacuolar H+-translocating inorganic pyrophosphatase (Vpp 1) marks partial aleurone cell fate in cereal endosperm development. Plant Mol Biol 56:325–337

    PubMed  CAS  Google Scholar 

  • Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L, Wu W-H (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    PubMed  CAS  Google Scholar 

  • Yang N-S, Russell D (1990) Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci USA 87:4144–4148

    PubMed  CAS  Google Scholar 

  • Yang SJ, Jian SS, Kuo SY, Hung SH, Tam MF, Pam RL (1999) Localization of carboxylic residues possible involved in the inhibition of vacuolar H+-pyrophosphatase by N, N′dicyclohexylcarbodiimide. Biochem J 342:641–646

    PubMed  CAS  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart L, Murphy A, Gaxiola R (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5:735–745

    PubMed  CAS  Google Scholar 

  • Yang Y, Qin Y, Zhao F, Xie C, Liu D, Chen S, Fuglsang AT, Palmgren MG, Schumaker KS, Den XW, Guo Y (2010) AtJ3 regulates the plasma membrane H+-ATPase in Arabidopsis through interaction with the PKS5 kinase. Plant Cell 22:1313–1332

    PubMed  CAS  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    PubMed  CAS  Google Scholar 

  • Yue G, Sui Z, Gao Q, Zhang J (2008) Molecular cloning and characterization of a novel H+-translocating pyrophosphatase gene in Zea mays. DNA Seq 19(2):79–86

    PubMed  CAS  Google Scholar 

  • Zhao F-Y, Zhang X-J, Li P-H, Zhao Y-X, Zhang H (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed. doi:10.1007/s11032-006-9005-6

    Google Scholar 

  • Zhen RG, Kim EJ, Rea PA (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269(37):23342–23350

    PubMed  CAS  Google Scholar 

  • Zhen RG, Kim EJ, Rea PA (1997a) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N, N'-dicyclohexylcarbodiimide. J Biol Chem 272(35):22340–22348

    PubMed  CAS  Google Scholar 

  • Zhen RG, Kim EJ, Rea PA (1997b) The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv Bot Res 25:298–337

    Google Scholar 

  • Zhou Z, Peng SB, Crider BP, Andersen P, Xie XS, Stone DK (1999) Recombinant SFD isoforms activate vacuolar proton pumps. J Biol Chem 274(22):15913–15919

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to apologize to authors whose work we did not discuss because of space constraints. RAG and JPV would like to thank J. Sanchez and B. Ayre for editing help. RAG and JPV were supported by Arizona State University start-up funds. A.T. Fuglsang would like to thank M. Palmgren for comments and suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Fuglsang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuglsang, A.T., Paez-Valencia, J., Gaxiola, R.A. (2011). Plant Proton Pumps: Regulatory Circuits Involving H+-ATPase and H+-PPase. In: Geisler, M., Venema, K. (eds) Transporters and Pumps in Plant Signaling. Signaling and Communication in Plants, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14369-4_2

Download citation

Publish with us

Policies and ethics