Skip to main content

Part of the book series: Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms ((LANDOLT 1,volume 21B2))

  • 47 Accesses

Abstract

This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '6.4 Cryogenic Detectors' of Chapter '6 Detectors for Special Applications' with the content:

6.4 Cryogenic Detectors

6.4.1 Introduction

6.4.2 General features of cryogenic calorimeters

6.4.3 Phonon Sensors

6.4.3.1 Semiconducting Thermistors

6.4.3.2 Super-conducting Transition Edge Sensors (TES)

6.4.3.3 Magnetic Sensors

6.4.4 Quasiparticle Detection

6.4.4.1 Superconducting Tunnel Junctions (STJ)

6.4.4.2 Microwave Kinetic Inductance Detector

6.4.4.3 Super-heated Super-conducting Granules (SSG)

6.4.5 Physics with Cryogenic Detectors

6.4.5.1 Direct Dark Matter Detection

6.4.5.2 Neutrino mass searches

6.4.5.2.1 Neutrinoless double beta decay

6.4.5.2.2 Direct neutrino mass measurements

6.4.5.3 Astrophysics

6.4.5.3.1 X-Ray Astrophysics

6.4.5.3.2 Optical/UV and CMB Astrophysics

6.4.6 Applications

6.4.7 Summary

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References for 6.4

  1. S.P. Langley, Proc. Am. Acad. Arts Sci. 16 (1881) 342.

    Article  Google Scholar 

  2. P. Curie, A. Laborde, Compt.Rend. Hebd. Seances Acad. Sci. Paris 136 (1903) 673-675.

    Google Scholar 

  3. C.D. Ellis, A. Wooster, Proc. R. Soc. 117 (1927) 109-123.

    Article  ADS  Google Scholar 

  4. W. Orthmann, Z. Phys. 60 (1930) 10; and L. Meitner, W. Orthmann, Z. Phy. 60 (1930) 143.

    Google Scholar 

  5. F. Simon, Nature 135 (1935) 763.

    Article  ADS  Google Scholar 

  6. D.H. Andrews, R.D. Fowler, M.C. Williams, Phys.Rev. 76 (1949) 154.

    Article  ADS  Google Scholar 

  7. G.H. Wood, B.L. White, Appl. Phys. Lett. 15 (1969) 237; and G.H. Wood, B.L. White, Can. J. Phys. 51 (1973) 2032.

    Article  ADS  Google Scholar 

  8. H. Bernas et al., Phys. Lett. A 24 (1967) 721.

    Article  ADS  Google Scholar 

  9. A. Drukier, C. Vallette, Nucl. Instrum. Meth. 105 (1972) 285.

    Article  ADS  Google Scholar 

  10. A. Drukier, L. Stodolsky, Phys. Rev. D 30 (1984) 2295.

    Article  ADS  Google Scholar 

  11. N. Coron, G. Dambier, J. Leblanc, in: Infrared detector techniques for Space Research, V. Manno, J. Ring (eds.), Reidel Dordrecht (1972), pp. 121-131.

    Google Scholar 

  12. T.O. Niinikoski, F. Udo, CERN NP Report 74-6 (1974).

    Google Scholar 

  13. E. Fiorini, T.O. Niinikoski, Nucl. Instrum. Meth. 224 (1984) 83.

    Article  Google Scholar 

  14. D. McCammon, S.H. Moseley, J.C. Mather, R. Mushotzky, J. Appl. Physics 56(5) (1984) 1263.

    Article  ADS  Google Scholar 

  15. N. Coron et al., Nature 314 (1985) 75-76.

    Article  ADS  Google Scholar 

  16. K. Pretzl, N. Schmitz, L. Stodolsky (eds.), Low-Temperature Detectors for Neutrinos and Dark Matter LTD1, Schloss Ringberg, Germany, Springer-Verlag (1987).

    Google Scholar 

  17. L. Gonzalez-Mestres, D. Perret-Gallix (eds.), Low-Temperature Detectors for Neutrinos and Dark Matter LTD2, Gif-sur-Yvette, France, Ed. Frontieres (1988).

    Google Scholar 

  18. L. Brogiato, D.V. Camin, E. Fiorini (eds.), Low-Temperature Detectors for Neutrinos and Dark Matter LTD3, Gif-sur-Yvette, France, Ed. Frontieres (1989).

    Google Scholar 

  19. N.E. Booth, G.L. Salmon (eds.), Low Temperature Detectors for Neutrinos and Dark Matter LTD4, Gif-sur-Yvette, France, Ed. Frontieres (1992).

    Google Scholar 

  20. S.E. Labov, B.A. Young (eds.), Proc. 5th Int. Workshop Low Temperature Detectors LTD5, Berkeley, CA, J. Low Temp. Phys. 93(3/4) (1993) 185-858.

    Google Scholar 

  21. H.R. Ott, A. Zehnder (eds.), Proc. 6th Int. Workshop Low Temperature Detectors LTD6, Beatenberg/Interlaken, Switzerland, Nucl. Instrum. Meth. A 370 (1996) 1-284.

    Google Scholar 

  22. S. Cooper (ed.), Proc. 7th Int. Workshop Low Temperature Detectors LTD7, Max Planck Institut of Physics Munich, Germany, ISBN 3-00-002266-X, (1997).

    Google Scholar 

  23. P. deKorte, T. Peacock (eds.), Proc. 8th Int. Workshop Low Temperature Detectors LTD8, Dalfsen, Netherlands, Nucl. Instrum. Meth. A 444 (2000).

    Google Scholar 

  24. F. Scott Porter, D. MacCammon, M. Galeazzi, C. Stahle (eds.). Proc. 9th Int. Workshop Low Temperature Detectors LTD9, American Institute of Physics AIP Conf. Proc. 605 (2002).

    Google Scholar 

  25. F. Gatti (ed.), Proc. 10th Int. Workshop Low Temperature Detectors LTD10, Genova, Italy, Nucl. Instrum. Meth. A 520 (2004).

    Google Scholar 

  26. M. Ohkubo (ed.), Proc. 11th Int. Workshop Low Temperature Detectors LTD11, Tokyo, Japan, Nucl. Instrum. Meth. A 559 (2006).

    Google Scholar 

  27. M. Chapellier, G. Chardin (eds.), Proc. 12th Int. Workshop Low Temperature Detectors LTD12, Paris, France, J. Low Temp. Phys. 151(1/2, 3/4) (2008).

    Google Scholar 

  28. A. Barone (ed.), Proc. Superconductive Particle Detectors, Torino, Oct. 26-29, 1987, World Scientific.

    Google Scholar 

  29. A. Barone, Nucl. Phys. B (Proc. Suppl.) 44 (1995) 645.

    MathSciNet  Google Scholar 

  30. D. Twerenbold, Rep. Prog. Phy. 59 (1996) 349.

    Article  ADS  Google Scholar 

  31. H. Kraus, Supercond. Sci. Technol. 9 (1996) 827.

    Article  ADS  Google Scholar 

  32. N. Booth, B. Cabrera, E. Fiorini, Annu. Rev. Nucl. Part. Sci. 46 (1996) 471.

    Article  ADS  Google Scholar 

  33. K. Pretzl, Cryogenic calorimeters in astro and particle physics, Nucl. Instrum. Meth. A 454 (2000) 114.

    Article  ADS  Google Scholar 

  34. Ch. Enss (ed.), Cryogenic particle detection, Topics in Applied Physics Vol. 99, Springer Berlin, Heidelberg, New York (2005).

    Google Scholar 

  35. D. McCammon, Thermal Equilibrium Calorimeters-An Introduction, in: Cryogenic particle detection, Topics in Applied Physics Vol. 99, Ch. Enss (ed.), Springer Berlin, Heidelberg, New York (2005), p. 1.

    Google Scholar 

  36. J.C. Mather, Appl. Opt. 21 (1982) 1125.

    Article  MathSciNet  ADS  Google Scholar 

  37. S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56(5) (1984) 1257-1262.

    Article  ADS  Google Scholar 

  38. D.A. Wollmann et al., Nucl. Instrum. Meth. A 444 (2000) 145.

    Article  ADS  Google Scholar 

  39. T.C.P. Chui et al., Phys. Rev. Lett. 69(21) (1992) 3005.

    Article  ADS  Google Scholar 

  40. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, Springer-Verlag (1984).

    Google Scholar 

  41. P. Colling et al., Nucl. Instrum. Meth. A 354 (1995) 408.

    Article  ADS  Google Scholar 

  42. K.D. Irwin, Appl. Phys. Lett. 66 (1995) 1998.

    Article  ADS  Google Scholar 

  43. K.D. Irwin, G.C. Hilton, Transition Edge Sensors, in: Cryogenic particle detection, Topics in Applied Physics Vol. 99, Ch. Enss (ed.), Springer Berlin, Heidelberg, New York (2005), p. 63.

    Google Scholar 

  44. B. Young et al., IEEE Trans. Magnetics 25 (1989) 1347.

    Article  ADS  Google Scholar 

  45. K.D. Irwin, B. Cabrera, B. Tigner, S. Sethuraman, in: Proc. 4th Int. Workshop Low Temperature Detectors for Neutrinos and Dark Matter LTD4, N.E. Booth, G.L. Salmon (eds.), Gif-sur-Yvette, France, Ed. Frontieres (1992), p. 290.

    Google Scholar 

  46. P. Ferger et al., Nucl. Instrum. Meth. A 370 (1996) 157.

    Article  ADS  Google Scholar 

  47. P. Colling et al., Nucl. Instrum. Meth. A 354 (1995) 408.

    Article  ADS  Google Scholar 

  48. U. Nagel et al., J. Appl. Phys. 76 (1994) 4262

    Article  ADS  Google Scholar 

  49. J. Hohne et al., X-Ray Spectrom. 28 (1999) 396.

    Article  Google Scholar 

  50. J. Martinis, G. Hilton, K. Irwin, D. Wollmann, Nucl. Instrum. Meth. A 444 (2000) 23.

    Article  ADS  Google Scholar 

  51. G. Brammertz et al., Appl. Phys. Lett. 80 (2002) 2955.

    Article  ADS  Google Scholar 

  52. C. Hunt et al., Proc. SPIE 4855 (2003) 318.

    Article  ADS  Google Scholar 

  53. B. Young et al., Nucl. Instrum. Meth. A 520 (2004) 307.

    Article  ADS  Google Scholar 

  54. M. Buehler, E. Umlauf, Europhys. Lett. 5 (1988) 297.

    Article  ADS  Google Scholar 

  55. E. Umlauf, M.Buehler, in: Proc. Int. Workshop Low Temperature Detectors for Neutrinos and Dark Matter LTD4, N.E. Booth, G.L. Salmon (eds.), Gif-sur-Yvette, France, Ed. Frontieres (1992), p. 229.

    Google Scholar 

  56. S.R. Bandler et al., J. Low Temp. Phys. 93 (1993) 709.

    Article  ADS  Google Scholar 

  57. A. Fleischmann et al., Nucl. Instrum. Meth. A 520 (2004) 27.

    Article  ADS  Google Scholar 

  58. A. Fleischmann, C. Enss, G.M. Seidel, Metallic Magnetic Calorimeters, in: Cryogenic particle detection, Topics in Applied Physics Vol. 99, Ch. Enss (ed.), Springer Berlin, Heidelberg, New York (2005), p. 196.

    Google Scholar 

  59. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect, New York, Wiley-Interscience (1984).

    Google Scholar 

  60. D. Twerenbold, A. Zehnder, J. Appl. Phys. 61 (1987) 1.

    Article  ADS  Google Scholar 

  61. H. Kraus et al., Phys. Lett. B 231 (1989) 195.

    Article  ADS  Google Scholar 

  62. C.A. Mears, S. Labov, A.T. Barfknecht, Appl. Phys. Lett. 63(21) (1993) 2961.

    Article  ADS  Google Scholar 

  63. P. Lerch, A. Zehnder, Quantum Giaever Detectors: STJ’s, in: Cryogenic particle detection, Topics in Applied Physics Vol. 99, Ch. Enss (ed.), Springer Berlin, Heidelberg, New York (2005), p. 217.

    Google Scholar 

  64. N.E. Booth, Appl. Phys. Lett. 50 (1987) 293.

    Article  ADS  Google Scholar 

  65. K.E. Gray, Appl. Phys. Lett.32 (1978) 392.

    Article  ADS  Google Scholar 

  66. I. Giaever, K. Megerle, Phys. Rev. 122(4) (1961) 1101.

    Article  ADS  Google Scholar 

  67. S.B. Kaplan et al., Phys. Rev. B 14(11) (1976) 4854.

    Article  ADS  Google Scholar 

  68. P.A.J. de Korte et al., Proc. SPIE 1743 (1992) 24.

    Article  ADS  Google Scholar 

  69. G. Angloher et al., J. Appl. Phys. 89(2) (2001) 1425.

    Article  ADS  Google Scholar 

  70. P. Verhoeve et al., Proc. SPIE 6276 (2007) 41.

    Google Scholar 

  71. N. Rando et al., Rev. Sci. Instrum. 71(12) (2000) 4582.

    Article  ADS  Google Scholar 

  72. S. Friedrich et al., Rev. Sci. Instrum. 73 (2002) 1629.

    Article  ADS  Google Scholar 

  73. R. Christiano et al., Appl. Phys. Lett. 74 (1999) 3389.

    Article  ADS  Google Scholar 

  74. M.P. Lissitski et al., Nucl. Instrum. Meth. A 520 (2004) 240.

    Article  ADS  Google Scholar 

  75. H. Kraus et al., Phys. Lett. B 231 (1989) 195.

    Article  ADS  Google Scholar 

  76. E. Figueroa-Feliciano, Nucl. Instrum. Meth. A 520 (2004) 496.

    Article  ADS  Google Scholar 

  77. P.K. Day et al., Nature 425 (2003) 871.

    Article  Google Scholar 

  78. B. Mazin et al., Proc. SPIE 4849 (2002) 283.

    Article  ADS  Google Scholar 

  79. K. Borer et al., Astroparticle Phys. 22 (2004) 199.

    Article  ADS  Google Scholar 

  80. K. Borer, M. Furlan, Nucl. Instrum. Meth. A 365 (1995) 491.

    Article  ADS  Google Scholar 

  81. A. Kotlicki et al., in: Low-Temperature Detectors for Neutrinos and Dark Matter LTD1, K. Pretzl, N. Schmitz, L. Stodolsky (eds.) Springer-Verlag (1987), p. 37.

    Google Scholar 

  82. R. Leoni et al., J. Low Temp. Phys. 93(3/4) (1993) 503.

    Article  ADS  Google Scholar 

  83. B. van den Brandt et al., Nucl. Phys. B (Proc. Suppl.) 70 (1999) 101.

    Article  Google Scholar 

  84. M. Abplanalp et al., Nucl. Instrum. Meth. A 360 (1995) 616.

    Article  ADS  Google Scholar 

  85. S. Janos et al., Nucl. Instrum. Meth. A 547 (2005) 359.

    Article  ADS  Google Scholar 

  86. G. Meagher et al., J. Low Temp. Phys. 93(3/4) (1993) 461.

    Article  ADS  Google Scholar 

  87. C. Berger et al., J. Low Temp. Phys. 93(3/4) (1993) 509.

    Article  ADS  Google Scholar 

  88. S. Calatroni et al., Nucl. Instrum. Meth. A 444 (2000) 285.

    Article  ADS  Google Scholar 

  89. S. Casalboni et al., Nucl. Instrum. Meth. A 459 (2001) 469.

    Article  ADS  Google Scholar 

  90. S. Calatroni et al., Nucl. Instrum. Meth. A 559 (2006) 510.

    Article  ADS  Google Scholar 

  91. M. Abplanalp, Nucl. Instrum. Meth. A 370 (1996) 11.

    Article  ADS  Google Scholar 

  92. K. Pretzl, Particle World 1(6) (1990) 153.

    Google Scholar 

  93. K. Pretzl, J. Low Temp. Phys. 93 (1993) 439.

    Article  ADS  Google Scholar 

  94. F. Zwicky, Helv. Phys. Acta 6 (1933) 110.

    ADS  MATH  Google Scholar 

  95. S. Perlmutter et al., Astrophys. J. 483 (1997) 565.

    Article  ADS  Google Scholar 

  96. A.G. Riess et al., Astronom. J. 116 (1998) 1009.

    Article  ADS  Google Scholar 

  97. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170 (2007) 377.

    Article  ADS  Google Scholar 

  98. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38 (1977) 1440.

    Article  ADS  Google Scholar 

  99. K. van Biber, L. J. Rosenberg, Physics Today (August 2006) 30.

    Google Scholar 

  100. K. Pretzl, Space Science Reviews 100 (2002) 209.

    Article  ADS  Google Scholar 

  101. G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267 (1996) 195.

    Article  ADS  Google Scholar 

  102. B. Sadoulet, in: Low Temperature Detectors for Neutrinos and Dark Matter LTD1, K. Pretzl, L. Stodolsky, N. Schmitz (eds.), Springer-Verlag (1987), p. 86.

    Google Scholar 

  103. L. Gonzalez-Mestres, D. Perret-Gallix, Nucl. Instrum. Meth. A 279 (1989) 382.

    Article  ADS  Google Scholar 

  104. S. Cebrian et al., Phys. Lett. B 563 (2003) 48.

    Article  ADS  Google Scholar 

  105. P. Meunier et al., Appl. Phys. Lett. 75(9) (1999) 1335.

    Article  ADS  Google Scholar 

  106. D.S. Akerib et al., Phys. Rev. D 72 (2005) 052009.

    Article  ADS  Google Scholar 

  107. Z. Ahmed et al., arXiv:0802.3530 [astro-ph] (Feb. 2008).

    Google Scholar 

  108. V. Sanglard et al., Phys. Rev. D 71 (2005) 122002.

    Article  ADS  Google Scholar 

  109. T. Shutt et al., Nucl. Instrum. Meth. A 444 (2000) 34.

    Article  Google Scholar 

  110. D.S. Akerib et al., Phys. Rev. D 68 (2003) 082002.

    Article  ADS  Google Scholar 

  111. G. Angloher et al., Astroparticle Physics 23 (2005) 325.

    Article  ADS  Google Scholar 

  112. C. Isaila et al., Nucl. Instrum. Meth. 559 (2006) 399; and C. Isaila et al., J. Low Temp. Phys. 151(1/2) (2008) 394.

    Article  ADS  Google Scholar 

  113. J. Ninković et al., Nucl. Instrum. Meth. A 564 (2006) 567.

    Article  ADS  Google Scholar 

  114. G.Angloher et al., arXiv:0809.1829 [astro-ph] (Sept. 2008).

    Google Scholar 

  115. J. Angle et al., Phys. Rev. Lett. 100 (2008) 021303.

    Article  ADS  Google Scholar 

  116. P. Bennetti et al., Astroparticle Physics 28 (2008) 495.

    Article  Google Scholar 

  117. G.J. Alner et al., Astroparticle Physics 28 (2007) 287.

    Article  ADS  Google Scholar 

  118. R. Bernabei et al., Phys. Lett. B 480 (2000) 23.

    Article  ADS  Google Scholar 

  119. R. Bernabei et al., arXiv:0804.2741 [astro-ph].

    Google Scholar 

  120. E.A. Baltz, P. Gondolo, Phys. Rev. D 67 (2003) 063503.

    Article  ADS  Google Scholar 

  121. S. Pirro et al., Nucl. Instrum. Meth. A 444 (2000) 71.

    Article  ADS  Google Scholar 

  122. Y. Fukuda et al., Phys. Rev. Lett. 81(8) (1998) 1562.

    Article  ADS  Google Scholar 

  123. M. Maltroni, T. Schwetz, M. Tortola, J.W.F. Valle, New J. Phys. 6 (2004) 122.

    Article  ADS  Google Scholar 

  124. M. Goeppert Mayer, Phys. Rev. 48 (1935) 512.

    Article  ADS  MATH  Google Scholar 

  125. P. Vogel, Double Beta decay: Theory, Experiment and Implications, in: Current aspects of Neutrino Physics, D.O. Caldwell (ed.), Springer-Verlag (2001), p. 177.

    Google Scholar 

  126. C. Arnaboldi et al., Phys. Rev. Lett. 95 (2005) 142501.

    Article  ADS  Google Scholar 

  127. H.V. Klapdor-Kleingrothaus et al., Nucl. Instrum. Meth. A 522 (2004) 198.

    Article  Google Scholar 

  128. E. Fiorini, Europhys. News 38(4) (2007) 30.

    Article  ADS  Google Scholar 

  129. E. Fiorini, Phys. Rep. 307 (1998) 309.

    Article  ADS  Google Scholar 

  130. V.M. Lobashov, Nucl. Phys. A 719 (2003) 153, and references therein.

    Article  ADS  Google Scholar 

  131. F. Fontanelli, F. Gatti, A. Swift, S. Vitale, Nucl. Instrum. Meth. A 370 (1996) 247.

    Article  ADS  Google Scholar 

  132. F. Gatti et al., Nucl. Phys. B 91 (2001) 293.

    Article  Google Scholar 

  133. M. Sisti et al., Nucl. Instrum. Meth. A 520 (2004) 125.

    Article  ADS  Google Scholar 

  134. A. Nucciotti, J. Low Temp. Phys. 151(3/4) (2008) 597.

    Article  ADS  Google Scholar 

  135. F. Gatti et al., Nature 397 (1999) 137.

    Article  ADS  Google Scholar 

  136. F. Gatti, F. Fontanelli, M. Galeazzi, S. Vitale, Nucl. Instrum. Meth. A 444 (2000) 88.

    Article  ADS  Google Scholar 

  137. C. Arnaboldi et al., Phys. Rev. Lett. 96 (2006) 042503.

    Article  ADS  Google Scholar 

  138. D. McCammon et al., Astrophys. J 576 (2002) 188.

    Article  ADS  Google Scholar 

  139. C.K. Stahle et al., Nucl. Instrum. Meth. A 520 (2004) 466.

    Article  ADS  Google Scholar 

  140. D.D.E. Martin et al., Nucl. Instrum. Meth. A 520 (2004) 512.

    Article  ADS  Google Scholar 

  141. N. Rando et al., J. Low Temp. Phys. 93(3/4) (1993) 659.

    Article  ADS  Google Scholar 

  142. N. Rando et al., J. Appl. Phys. 71(12) (2000) 4582.

    Google Scholar 

  143. B. Cabrera et al., Appl. Phys. Lett. 73 (1998) 735.

    Article  ADS  Google Scholar 

  144. D.D.E. Martin et al., Proc. SPIE 6269 (2006) 62690O-1.

    Article  Google Scholar 

  145. J. Burney et al., Nucl. Instrum. Meth. A 559 (2006) 506.

    Article  ADS  Google Scholar 

  146. R.W. Romani et al., Astrophys. J. 563 (2001) 221.

    Article  ADS  Google Scholar 

  147. J.A. Chervanek et al., Appl. Phys. Lett. 44 (1999) 4043.

    Article  ADS  Google Scholar 

  148. P.A.J. de Korte et al., Rev. Sci. Instrum. 74(8) (2003) 3807.

    Article  ADS  Google Scholar 

  149. W.B. Doriese et al., Nucl. Instrum. Meth. A 559 (2006) 808.

    Article  ADS  Google Scholar 

  150. R.A. Hijemering et al., Nucl. Instrum. Meth. A 559 (2006) 689.

    Article  ADS  Google Scholar 

  151. B. Cabrera, R. Romani, Optical/UV Astrophysics Applications of Cryogenic detectors, in: Cryogenic particle detection, Topics in Applied Physics Vol. 99, Ch. Enss (ed.), Springer Berlin, Heidelberg, New York (2005), p. 416.

    Google Scholar 

  152. P. Verhoeve, J. Low Temp. Phys. 151(3/4) (2008) 675.

    Article  ADS  Google Scholar 

  153. D. Samtleben, S. Staggs, B. Winstein, Annu. Rev. Nucl. Part. Sci. 57 (2007) 245.

    Article  ADS  Google Scholar 

  154. L. Lesyna et al., J. Low Temp. Phys. 93 (1993) 779.

    Article  ADS  Google Scholar 

  155. R. Ladbury, Physics Today (July 1998) 19.

    Google Scholar 

  156. D.E. Newbury et al., Electron Probe Microanalysis with Cryogenic Detectors, in: Cryogenic particle detection, Topics in Applied Physics Vol. 99, Ch. Enss (ed.), Springer Berlin, Heidelberg, New York (2005), p. 267.

    Google Scholar 

  157. V. Shvarts et al., Nucl. Instrum. Meth. A 520 (2004) 631.

    Article  ADS  Google Scholar 

  158. D. Twerenbold, Nucl. Instrum. Meth. A 370 (1996) 253.

    Article  ADS  Google Scholar 

  159. M. Frank et al., Mass Spectrometry Reviews 18 (1999) 155.

    Article  Google Scholar 

  160. D. Twerenbold et al., Proteomics 1 (2001) 66.

    Article  Google Scholar 

  161. M. Frank et al., Rapid Commun. Mass Spectrom. 10(15) (1996) 1946.

    Article  Google Scholar 

  162. G.C. Hilton et al., Nature 391 (1998) 672.

    Article  ADS  Google Scholar 

  163. J.N. Ullom, J. Low Temp. Phys. 151(3/4) (2008) 746.

    Article  ADS  Google Scholar 

  164. S. Rutzinger et al., Nucl. Instrum. Meth. A 520 (2004) 625.

    Article  ADS  Google Scholar 

  165. P. Christ et al., Eur. Mass Spectrom. 10 (2004) 469.

    Article  Google Scholar 

  166. P. Egelhof, S. Kraft-Bermuth, Heavy Ion Physics, in: Cryogenic particle detection, Topics in Applied Physics Vol. 99, Ch. Enss (ed.), Springer Berlin, Heidelberg, New York (2005), p. 469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pretzl, K. (2011). Cryogenic Detectors. In: Fabjan, C.W., Schopper, H. (eds) Detectors for Particles and Radiation. Part 2: Systems and Applications. Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, vol 21B2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14142-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14142-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14141-6

  • Online ISBN: 978-3-642-14142-3

Publish with us

Policies and ethics