Skip to main content

Label Ranking Algorithms: A Survey

  • Chapter
  • First Online:
Preference Learning

Abstract

Label ranking is a complex prediction task where the goal is to map instances to a total order over a finite set of predefined labels. An interesting aspect of this problem is that it subsumes several supervised learning problems, such as multiclass prediction, multilabel classification, and hierarchical classification. Unsurprisingly, there exists a plethora of label ranking algorithms in the literature due, in part, to this versatile nature of the problem. In this paper, we survey these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Agarwal, S. Chakrabarti, Learning random walks to rank nodes in graphs, in Proceedings of the Twenty-Fourth International Conference on Machine Learning (2007)

    Google Scholar 

  2. S. Agarwal, Ranking on graph data, in Proceedings of the Twenty-Third International Conference on Machine Learning (2006)

    Google Scholar 

  3. N. Ailon, Aggregation of partial rankings, p-ratings and top-m lists, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2007)

    Google Scholar 

  4. N. Ailon, M. Charikar, A. Newman, Aggregating inconsistent information: Ranking and clustering, in Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing (2005)

    Google Scholar 

  5. D. Aldous, Random walks on finite groups and rapidly mixing markov chains. Séminaire de probabilités de Strasbourg 17, 243–297 (1983)

    MathSciNet  Google Scholar 

  6. Y. Altun, T. Hofmann, M. Johnson, Discriminative learning for label sequences via boosting, in Advances in Neural Information Processing Systems, vol.15 (2002)

    Google Scholar 

  7. N. Balcan, N. Bansal, A. Beygelzimer, D. Coppersmith, J. Langford, G. Sorkin, Robust reductions from ranking to classification. Mach. Learn. J. 72(1–2), 139–153 (2008)

    Article  Google Scholar 

  8. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge Univeristy Press, 2004)

    Google Scholar 

  9. L.M. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Mathe. Math. Phys. 7, 200–217 (1967)

    Google Scholar 

  10. K. Brinker, E. Hüllermeier, Case-based label ranking, in Proceedings of the Seventeenth European Conference on Machine Learning (2006)

    Google Scholar 

  11. K. Brinker, E. Hüllermeier, Case-based multilabel ranking, in Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (2007)

    Google Scholar 

  12. C.J.C. Burges, R. Ragno, Q.V. Le, Learning to rank with nonsmooth cost functions, in Advances in Neural Information Processing Systems, vol.19 (2006)

    Google Scholar 

  13. C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. Hullender, Learning to rank using gradient descent, in Proceedings of the Twenty-Second International Conference on Machine Learning (2005)

    Google Scholar 

  14. W. Cheng, J.C. Huhn, E. Hüllermeier, Decision tree and instance-based learning for label ranking, in Proceedings of the Twenty-Sixth Annual International Conference on Machine Learning (2009)

    Google Scholar 

  15. W. Cheng, E. Hüllermeier, Instance-based label ranking using the Mallows model, in Proceedings of the Preference Learning Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (2008)

    Google Scholar 

  16. W. Chu, Z. Ghahramani, Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019–1041 (2005)

    MathSciNet  MATH  Google Scholar 

  17. W. Chu, S.S. Keerthi, New approaches to support vector ordinal regression, in Proceedings of the Twenty-Second International Conference on Machine Learning (2005)

    Google Scholar 

  18. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10, 243–270 (1999)

    MathSciNet  MATH  Google Scholar 

  19. M. Collins, R.E. Schapire, Y. Singer, Logistic regression, AdaBoost and Bregman distances. Mach. Learn. 48(1–3), 253–285 (2002)

    Article  MATH  Google Scholar 

  20. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  21. T.M. Cover, J.A. Thomas, Elements of information theory (Wiley-Interscience, New York, NY, USA, 1991)

    Book  MATH  Google Scholar 

  22. K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, Y. Singer, Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

    MathSciNet  MATH  Google Scholar 

  23. K. Crammer, Y. Singer, Pranking with ranking, in Advances in Neural Information Processing Systems, vol.14 (2001)

    Google Scholar 

  24. K. Crammer, Y. Singer, A family of additive online algorithms for category ranking. J. Mach. Learn. Res. 3, 1025–1058 (2003)

    MathSciNet  MATH  Google Scholar 

  25. K. Crammer, Y. Singer, Loss bounds for online category ranking, in Proceedings of the Eighteenth Annual Conference on Learning Theory (2005)

    Google Scholar 

  26. H. Daumé III, Practical Structured Learning Techniques for Natural Language Processing. PhD thesis, University of Southern California, Los Angeles, CA, August 2006

    Google Scholar 

  27. O. Dekel, C.D. Manning, Y. Singer, Log-linear models for label ranking, in Advances in Neural Information Processing Systems, vol.16 (2003)

    Google Scholar 

  28. A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J.R. Stat. Soc. B Methodological 39(1), 1–38 (1977)

    Google Scholar 

  29. C. Dwork, R. Kumar, M. Naor, D.Sivakumar, Rank aggregation methods for the web, in Proceedings of the Tenth International World Wide Web Conference (2001)

    Google Scholar 

  30. A. Elisseeff, J. Weston, A kernel method for multi-labelled classification, in Advances in Neural Information Processing Systems, vol.14 (2001)

    Google Scholar 

  31. R. Fagin, R. Kumar, M. Mahdian, D.Sivakumar, E. Vee, Comparing and aggregating rankings with ties, in Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (2004)

    Google Scholar 

  32. Y. Freuend, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

    Google Scholar 

  33. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Fung, R. Rosales, B. Krishnapuram, Learning rankings via convex hull separation, in Advances in Neural Information Processing Systems, vol.18 (2005)

    Google Scholar 

  35. J. Fürnkranz, Round robin classification. J. Mach. Learn. Res. 2, 721–747 (2002)

    MathSciNet  MATH  Google Scholar 

  36. J. Fürnkranz, E. Hüllermeier, Pairwise preference learning and ranking, in Proceedings of the Fourteenth European Conference on Machine Learning (2003)

    Google Scholar 

  37. J. Fürnkranz, E. Hüllermeier, E.L. Mencía, K. Brinker, Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

    Article  Google Scholar 

  38. T. Gärtner, S. Vembu, Learning to predict combinatorial structures, in Proceedings of the NIPS Workshop on Structured Inputs and Structured outputs (2008)

    Google Scholar 

  39. T. Gärtner, S. Vembu, On structured output training: Hard cases and an efficient alternative. Mach. Learn. J. 76(2–3), 227–242 (2009)

    Article  Google Scholar 

  40. S. Har-Peled, D. Roth, D. Zimak, Constraint classification: A new approach to multiclass classification, in Proceedings of the Thirteenth International Conference on Algorithmic Learning Theory (2002)

    Google Scholar 

  41. S. Har-Peled, D. Roth, D. Zimak, Constraint classification for multiclass classification and ranking, in Advances in Neural Information Processing Systems, vol.15 (2002)

    Google Scholar 

  42. R. Hassin, S. Rubinstein, Approximations for the maximum acyclic subgraph problem. Inf. Process. Lett. 51(3), 133–140 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Herbrich, T. Graepel, K. Obermayer, Support vector learning for ordinal regression,. in Proceedings of the Ninth International Conference on Artificial Neural Networks (1999)

    Google Scholar 

  44. R. Herbrich, T. Graepel, K. Obermayer, Large margin rank boundaries for ordinal regression, In Advances in Large Margin Classifiers, ed. by P.J. Bartlett, B. Schölkopf, D. Schuurmans, A.J. Smola (MIT Press, Cambridge, MA, 2000), pp. 115–132

    Google Scholar 

  45. M. Huber, Fast perfect sampling from linear extensions. Discrete Math. 306(4), 420–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Hüllermeier, J. Fürnkranz, W. Cheng, K. Brinker, Label ranking by learning pairwise preferences. Artif. Intell. 178, 1897–1916 (2008)

    Google Scholar 

  47. J.Bartholdi III, C.A. Tovey, M.A. Trick, Voting schemes for which it can be difficult to tell who won the election. Soc. Choice Welfare 6(2), 157–165 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Jerrum, A. Sinclair, The Markov chain Monte Carlo method: An approach to approximate counting and integration, in Hochbaum DS(ed) Approximation Algorithms for NP-hard Problems (PWS Publishing, Boston, Mass., 1996), pp. 482–520

    Google Scholar 

  49. M.R. Jerrum, L.G. Valiant, V.V. Vazirani, Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 32, 169–188 (1986)

    Article  MathSciNet  Google Scholar 

  50. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002)

    Google Scholar 

  51. M. Kendall, A new measure of rank correlation. Biometrika 30, 81–89 (1938)

    MathSciNet  MATH  Google Scholar 

  52. C. Kenyon-Mathieu, W. Schudy, How to rank with few errors: A PTAS for weighted feedback arc set on tournaments, in Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing (2007)

    Google Scholar 

  53. J. Kivinen, M.K. Warmuth, Exponentiated gradient versus gradient descent for linear predictors. Inf. Comput. 132(1), 1–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Langford, B. Zadrozny, Estimating class membership probabilities using classifier learners, in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (2005)

    Google Scholar 

  55. Q.V. Le, A. Smola, Direct optimization of ranking measures. Technical report, NICTA, Canberra, Australia, 2007

    Google Scholar 

  56. G. Lebanon, J. Lafferty, Boosting and maximum likelihood for exponential models, in Advances in Neural Information Processing Systems, vol.14 (2001)

    Google Scholar 

  57. C. Mallows, Non-null ranking models. Biometrika 44(1/2), 114–130 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  58. R.T. McDonald, K. Crammer, F.C.N. Pereira, Online large-margin training of dependency parsers, in Proceedings of the Forty-Third Annual Meeting of the Association for Computational Linguistics (2005)

    Google Scholar 

  59. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculation by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  60. N.J. Nilsson, Learning Machines: Foundations of Trainable Pattern-Classifying Systems (McGraw-Hill, New York, NY, USA, 1965)

    MATH  Google Scholar 

  61. J.G. Propp, D.B. Wilson, Exact sampling with coupled markov chains and applications to statistical mechanics. Random Struct. Algorithms 9(1–2), 223–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Rifkin, Everything Old Is New Again: A Fresh Look at Historical Approaches in Machine Learning. PhD thesis, Sloan School of Management Science, MIT, 2002

    Google Scholar 

  63. F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  64. C. Rudin, Ranking with a p-norm push, in Proceedings of the 19th Annual Conference on Learning Theory (2006)

    Google Scholar 

  65. R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, in Proceedings of the Eleventh Annual Conference on Learning Theory (1998)

    Google Scholar 

  66. R.E. Schapire, Y. Singer, Boostexter: A boosting-based system for text categorization. Mach. Learn. 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  67. S. Shalev-Shwartz, Y. Singer, Efficient learning of label ranking by soft projections onto polyhedra. J. Mach. Learn. Res. 7, 1567–1599 (2006)

    MathSciNet  MATH  Google Scholar 

  68. S. Shalev-Shwartz, Y. Singer, A primal-dual perspective of online learning algorithms. Mach. Learn. 69(2–3), 115–142 (2007)

    Article  Google Scholar 

  69. S. Shalev-Shwartz, Y. Singer, A unified algorithmic approach for efficient online label ranking, in Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (2007)

    Google Scholar 

  70. C. Spearman, The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904)

    Article  Google Scholar 

  71. J.A.K. Suykens, Multiclass least squares support vector machines, in Proceedings of the International Joint Conference on Neural Networks (1999)

    Google Scholar 

  72. J.A.K. Suykens, J.Vandewalle, Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  73. B. Taskar, V. Chatalbashev, D. Koller, C. Guestrin, Learning structured prediction models: A large margin approach, in Proceedings of the Twenty-Second International Conference on Machine Learning (2005)

    Google Scholar 

  74. B. Taskar, C. Guestrin, D. Koller, Max-margin Markov networks, in Advances in Neural Information Processing Systems, vol.16 (2003)

    Google Scholar 

  75. I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  76. A. van Zuylen, D.P. Williamson, Deterministic algorithms for rank aggregation and other ranking and clustering problems, in In Proceedings of the Fifth International Workshop on Approximation and Online Algorithms (2007)

    Google Scholar 

  77. S. Vembu, T. Gärtner, M. Boley, Probabilistic structured predictors, in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (2009)

    Google Scholar 

  78. S. Vembu, T. Gärtner, S. Wrobel, Semidefinite ranking on graphs, in Proceedings of the Fifth International Workshop on Mining and Learning with Graphs (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Vembu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vembu, S., Gärtner, T. (2010). Label Ranking Algorithms: A Survey. In: Fürnkranz, J., Hüllermeier, E. (eds) Preference Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14125-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14125-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14124-9

  • Online ISBN: 978-3-642-14125-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics