Skip to main content

Random Numbers and Monte Carlo Methods

  • Chapter
  • First Online:
Computational Physics
  • 2962 Accesses

Abstract

Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamical averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. This chapter begins with some basic statistics. Probability density and cumulative distribution are introduced. The construction of a histogram is described. The central limit theorem is discussed with some examples. Pseudo-random numbers with given distribution are generated. The principles of Monte Carlo integration and importance sampling are introduced. The Metropolis algorithm is studied in detail which is very helpful to calculate thermodynamic averages in configuration space. Computer experiments demonstrate the central limit theorem and nonlinear optimization with the Metropolis method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Institute for Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point Arithmetic. (ANSI/IEEE Std 754–1985)

    Google Scholar 

  2. N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  3. R.E. Caflisch, Monte Carlo and Quasi-Monte Carlo Methods, Acta Numerica, vol. 7 (Cambridge University Press, Cambridge, 1998) pp. 1–49

    Google Scholar 

  4. Richtmyer, Principles of Modern Mathematical Physics I (Springer, Berlin Heidelberg, New York, 1978)

    MATH  Google Scholar 

  5. J. Rice, Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, Belmont, 1995) ISBN 0-534-20934-3

    MATH  Google Scholar 

  6. G. Marsaglia, A. Zaman, Ann. Appl. Probab. 1, 462 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. G.E.P. Box, M.E. Muller, Ann. Math. Stat. 29, 610 (1958)

    Article  MATH  Google Scholar 

  8. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp O.J. Scherer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherer, P.O. (2010). Random Numbers and Monte Carlo Methods. In: Computational Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13990-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13990-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13989-5

  • Online ISBN: 978-3-642-13990-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics