Skip to main content

Numerical Experiments for Quantification of Small-Scale Effects in Particle-Laden Turbulent Flow

  • Conference paper
High Performance Computing in Science and Engineering, Garching/Munich 2009
  • 1815 Accesses

Abstract

The present work contains results from numerical simulations of particle-laden isotropic turbulence at high Reynolds and Stokes numbers (up to Re λ =265 and St=100 based on the Taylor length scale and Kolmogorov time scale, respectively). The focus is on the effect of small-scale turbulence on the particles, a modelling issue for LES of particle-laden flow. The results show that in dependence of Stokes number, particles tend to cluster in regions where kinetic energy of the unresolved scales is lower than average. This effect was so far neglected in most LES models for particle-laden flow. Furthermore, the results show that locations for particle clustering and mechanisms leading to clustering are dominated by large-scale dynamics, a promising result for LES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armenio, V., Fiorotto, V.: The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13(8), 2437–2440 (2001). DOI 10.1063/1.1385390. URL http://dx.doi.org/10.1063/1.1385390

    Article  Google Scholar 

  2. Armenio, V., Piomelli, U., Fiorotto, V.: Effect of the subgrid scales on particle motion. Phys. Fluids 11(10), 3030–3042 (1999)

    Article  MATH  Google Scholar 

  3. Ayyalasomayajula, S., Gylfason, A., Collins, L.R., Bodenschatz, E., Warhaft, Z.: Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97(14), 144507 (2006). DOI 10.1103/PhysRevLett.97.144507. URL http://dx.doi.org/10.1103/PhysRevLett.97.144507

    Article  Google Scholar 

  4. Balachandar, S., Eaton, J.K.: Turbulence dispersed multiphase flow. Ann. Rev. Fluid Mech. 42(1) (2010). DOI 10.1146/annurev.fluid.010908.165243. URL http://dx.doi.org/10.1146/annurev.fluid.010908.165243

  5. Balachandar, S., Maxey, M.R.: Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83(1), 96–125 (1989)

    Article  MATH  Google Scholar 

  6. Biferale, L., Boffetta, G., Celani, A., Devenish, B.J., Lanotte, A., Toschi, F.: Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93(6), 064502 (2004). DOI 10.1103/PhysRevLett.93.064502. URL http://dx.doi.org/10.1103/PhysRevLett.93.064502

    Article  Google Scholar 

  7. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)

    Google Scholar 

  8. Domaradzki, A.J., Saiki, E.M.: A subgrid-scale model based on the estimation of unresolved scales of turbulence. Physics of Fluids 9(7), 2148–2164 (1997). URL http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PHFLE6000009000007002148000001&idtype=cvips&gifs=yes

    Article  Google Scholar 

  9. Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18(4), 045103 (2006). DOI 10.1063/1.2189288. URL http://dx.doi.org/10.1063/1.2189288

    Article  Google Scholar 

  10. Gobert, C., Schwertfirm, F., Manhart, M.: Lagrangian scalar tracking for laminar micromixing at high schmidt numbers. In: Proceedings of the 2006 ASME Joint U.S.-European Fluids Engineering Summer Meeting. Miami, Fl. (2006)

    Google Scholar 

  11. Guha, A.: Transport and deposition of particles in turbulent and laminar flow. Ann. Rev. Fluid Mech. 40(1), 311–341 (2008). DOI 10.1146/annurev.fluid.40.111406.102220. URL http://dx.doi.org/10.1146/annurev.fluid.40.111406.102220

    Article  MathSciNet  Google Scholar 

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, New York (1990)

    Google Scholar 

  13. Hogan, R.C., Cuzzi, J.N.: Stokes and reynolds number dependence of preferential particle concentration in simulated three-dimensional turbulence. Physics of Fluids 13, 2938–2945 (2001). DOI 10.1063/1.1399292. URL http://dx.doi.org/10.1063/1.1399292

    Article  Google Scholar 

  14. Kubik, A., Kleiser, L.: Forces acting on particles in seperated wall-bounded shear flow. Proc. Appl. Math. Mech. 4, 512–513 (2004)

    Article  Google Scholar 

  15. Kuerten, J.G.M., Vreman, A.W.: Can turbophoresis be predicted by large-eddy simulation? Phys. Fluids 17, 011701 (2005)

    Article  Google Scholar 

  16. Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33(3), 435–461 (2004)

    Article  MATH  Google Scholar 

  17. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  18. Meyer, D.W., Jenny, P.: Conservative velocity interpolation for PDF methods. Proc. Appl. Math. Mech. 4(1), 466–467 (2004)

    Article  Google Scholar 

  19. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  20. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer (2006). URL http://books.google.de/books?hl=de&lr=&id=ODYiH6RNyoQC&oi=fnd&pg=PA1&dq=sagaut+Large+Eddy+Simulation+for+Incompressible+Flows&ots=XdayeamC04&sig=n8-WY6PRTKbN9_DvBAE473d0tgs

  21. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Num. Anal. 5(3), 530–558 (1968). URL http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000005000003000530000001&idtype=cvips&gifs=yes

    Article  MATH  Google Scholar 

  22. Sullivan, N.P., Mahalingam, S., Kerr, R.M.: Deterministic forcing of homogeneous, isotropic turbulence. Phys. Fluids 6(4), 1612–1614 (1994)

    Article  Google Scholar 

  23. Wang, L.P., Maxey, M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68 (1993). URL http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1993JFM...256...27W

    Article  Google Scholar 

  24. Wang, Q., Squires, K.D.: Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8(5), 1207–1223 (1996)

    Article  MATH  Google Scholar 

  25. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yang, Y., He, G.W., Wang, L.P.: Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. J. Turbul. 9, N8 (2008). DOI 10.1080/14685240801905360. URL http://dx.doi.org/10.1080/14685240801905360

    MathSciNet  Google Scholar 

  27. Yeung, P.K., Pope, S.B.: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79(2), 373–416 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Gobert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gobert, C., Manhart, M. (2010). Numerical Experiments for Quantification of Small-Scale Effects in Particle-Laden Turbulent Flow. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_7

Download citation

Publish with us

Policies and ethics