Skip to main content

Promising Targeted Agents

  • Chapter
  • First Online:
Childhood Leukemia

Part of the book series: Pediatric Oncology ((PEDIATRICO))

  • 2134 Accesses

Abstract

The past several decades have yielded remarkable improvements in long-term survival of children with acute leukemia, primarily resulting from sequential, controlled, multicenter clinical trials evaluating intensification of chemotherapy in a risk-adjusted paradigm based upon clinical and biologic features (Pui et al. 2004). These improvements have been particularly striking for acute lymphoblastic leukemia (ALL), the most common malignancy in children. In ALL, prolonged event-free survival (EFS) rates now approach 80%. This progress unequivocally represents one of the greatest success stories in modern medicine (Pui and Evans 2006; Moricke et al. 2008). Despite this success, however, many patients with ALL still relapse. Unfortunately, the outlook for children with relapsed ALL is grim, especially if the relapse occurs within 3 years of diagnosis (Nguyen et al. 2008). Also disconcerting are the significant, and not uncommonly debilitating, acute and late complications associated with curative therapeutic approaches for ALL (Pui et al. 2003; Mody et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360

    Article  PubMed  CAS  Google Scholar 

  • Alsina M, Trudel S, Vallone M et al (2007) Phase I single agent antitumor activity of twice weekly-consecutive day dosing of the proteasome inhibitor carfilzomib in hematologic malignancies. Blood 110(Suppl 1):128

    Google Scholar 

  • Aplenc R, Alonzo TA et al (2008) Safety and efficacy of gemtuzumab ozogamicin in combination with chemotherapy for pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. J Clin Oncol 26(14): 2390–3295

    Article  PubMed  CAS  Google Scholar 

  • Arceci RJ, Sande J et al (2005) Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood 106(4):1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Arico M, Valsecchi MG et al (2000) Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 342(14):998–1006

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Staunton JE et al (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30(1):41–47

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Kung AL et al (2003) Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3(2):173–183

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Mabon ME et al (2004) FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 103(9): 3544–3546

    Article  PubMed  CAS  Google Scholar 

  • Armstrong F, Brunet de la Grange P et al (2009) NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113(8):1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Aster JC, Pear WS et al (2008) Notch signaling in leukemia. Annu Rev Pathol 3:587–613

    Article  PubMed  CAS  Google Scholar 

  • Attar EC, De Angelo DJ et al (2008) Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin Cancer Res 14(5):1446–1454

    Article  PubMed  CAS  Google Scholar 

  • Baldo P, Cecco S et al (2008) mTOR pathway and mTOR inhibitors as agents for cancer therapy. Curr Cancer Drug Targets 8(8):647–665

    Article  PubMed  CAS  Google Scholar 

  • Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–11

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  • Brashem-Stein C, Flowers DA et al (1993) Ontogeny of hematopoietic stem cell development: reciprocal expression of CD33 and a novel molecule by maturing myeloid and erythroid progenitors. Blood 82(3):792–799

    PubMed  CAS  Google Scholar 

  • Brown P, Small D (2004) FLT3 inhibitors: a paradigm for the development of targeted therapeutics for paediatric cancer. Eur J Cancer 40(5):707–721, discussion 722–704

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Meshinchi S et al (2004) Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood 104(6):1841–1849

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Levis M et al (2005) FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 105(2):812–820

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Levis M et al (2006) Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia: Off J Leukemia Soc Am, Leukemia Res Fund, UK 20(8):1368–1376

    Article  CAS  Google Scholar 

  • Cameron EE, Bachman KE et al (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107

    Article  PubMed  CAS  Google Scholar 

  • Carnahan J, Wang P et al (2003) Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res 9(10 Pt 2): 3982S–3990S

    PubMed  CAS  Google Scholar 

  • Carow CE, Levenstein M et al (1996) Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 87(3):1089–1096

    PubMed  CAS  Google Scholar 

  • Carter BZ, Gronda M et al (2005a) Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 105(10): 4043–4050

    Article  PubMed  CAS  Google Scholar 

  • Carter TA, Wodicka LM et al (2005b) Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA 102(31):11011–11016

    Article  PubMed  CAS  Google Scholar 

  • Cashen AF, Schiller GJ et al (2010) Multicenter, Phase II study of Decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol 28(4): 556–61

    Google Scholar 

  • Castor A, Nilsson L et al (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11(6):630–637

    Article  PubMed  CAS  Google Scholar 

  • Castoro RJ, Raynal NJ et al (2009) DNA methylation and gene expression analysis in a Phase II randomized study of Decitabine vs. Decitabine plus valproic acid in MDS and AML. ASH Annu Meeting Abstracts 114(22):3808

    Google Scholar 

  • Chauhan D, Catley L et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419

    Article  PubMed  CAS  Google Scholar 

  • Cortes J, Thomas D et al (2004) Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 10(10):3371–3376

    Article  PubMed  CAS  Google Scholar 

  • Cox CV, Evely RS et al (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104(9):2919–2925

    Article  PubMed  CAS  Google Scholar 

  • Cullion K, Draheim KM et al (2009) Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood 113(24):6172–6181

    Article  PubMed  CAS  Google Scholar 

  • DeAngelo DJ (2006) A Phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol 24:6585

    Google Scholar 

  • Dorrance AM, Liu S et al (2006) Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 116(10):2707–2716

    Article  PubMed  CAS  Google Scholar 

  • Douros J, Suffness M (1981) New antitumor substances of natural origin. Cancer Treat Rev 8(1):63–87

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ, Sawyers CL et al (2001a) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344(14):1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ, Talpaz M et al (2001b) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Eng CP, Sehgal SN et al (1984) Activity of rapamycin (AY-22, 989) against transplanted tumors. J Antibiot (Tokyo) 37(10):1231–1237

    Article  CAS  Google Scholar 

  • Esteller M (2003) Cancer epigenetics: DNA methylation and chromatin alterations in human cancer. Adv Exp Med Biol 532:39–49

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Fenaux P, Mufti GJ et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232

    Article  PubMed  CAS  Google Scholar 

  • Flotho C, Claus R et al (2009) The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23(6):1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Fouladi M, Laningham F et al (2007) Phase I study of everolimus in pediatric patients with refractory solid tumors. J Clin Oncol 25(30):4806–4812

    Article  PubMed  CAS  Google Scholar 

  • Franklin J, Alonzo TA et al (2008) COG AAML03P1: efficacy and safety in a pilot study of intensive chemotherapy including gemtuzumab in children newly diagnosed with acute myeloid leukemia (AML). Blood 112(11):136a

    Google Scholar 

  • Freeman SD, Kelm S et al (1995) Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85(8):2005–2012

    PubMed  CAS  Google Scholar 

  • Friedman AD (1999) Leukemogenesis by CBF oncoproteins. Leukemia 13(12):1932–1942

    Article  PubMed  CAS  Google Scholar 

  • Gal H, Amariglio N et al (2006) Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 20(12):2147–2154

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Assouline S et al (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112(4):981–989

    Article  PubMed  CAS  Google Scholar 

  • Giles F, Fischer T et al (2006) A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 12(15):4628–4635

    Article  PubMed  CAS  Google Scholar 

  • Gojo I, Jiemjit A et al (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109(7):2781–2790

    PubMed  CAS  Google Scholar 

  • Gorre ME, Sawyers CL (2002) Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol 9(4):303–307

    Article  PubMed  Google Scholar 

  • Graham SM, Jorgensen HG et al (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99(1):319

    Article  PubMed  CAS  Google Scholar 

  • Grignani F, De Matteis S et al (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391(6669):815–818

    Article  PubMed  CAS  Google Scholar 

  • Grimwade D, Enver T (2004) Acute promyelocytic leukemia: where does it stem from? Leukemia: Off J Leukemia Soc Am Leukemia Res Fund, UK 18(3):375

    Article  CAS  Google Scholar 

  • Gu L, Gao J et al (2008) Rapamycin reverses NPM-ALK-induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing G1 cell cycle arrest and apoptosis. Leukemia 22(11):2091–2096

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Neering SJ et al (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98(8):2301–2307

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Swiderski CF et al (2002) Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 99(25):16220–16225

    Article  PubMed  CAS  Google Scholar 

  • Haarman EG, Kaspers GJ et al (2008) Circumvention of glucocorticoid resistance in childhood leukemia. Leuk Res 32(9):1417–1423

    Article  PubMed  CAS  Google Scholar 

  • Heibert SW, Lutterbach B et al (2001) Mechanisms of transcriptional repression by the t(8;21)-, t(12;21)-, and inv(16)-encoded fusion proteins. Cancer Chemother Pharmacol 48(Suppl 1):S31–34

    Article  PubMed  Google Scholar 

  • Herrera L, Farah RA et al (2000) Immunotoxins against CD19 and CD22 are effective in killing precursor-B acute lymphoblastic leukemia cells in vitro. Leukemia 14(5):853–858

    Article  PubMed  CAS  Google Scholar 

  • Herrera L, Yarbrough S et al (2003) Treatment of SCID/human B cell precursor ALL with anti-CD19 and anti-CD22 immunotoxins. Leukemia 17(2):334–338

    Article  PubMed  CAS  Google Scholar 

  • Hess CJ, Errami A et al (2008) Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia. Leuk Lymphoma 49(6):1132–1141

    Article  PubMed  CAS  Google Scholar 

  • Ho YK, Bargagna-Mohan P et al (2007) LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem Biol 14(4):419–430

    Article  PubMed  CAS  Google Scholar 

  • Horton TM, Gannavarapu A et al (2006) Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 58(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Horton TM, Pati D et al (2007) A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin Cancer Res 13(5):1516–1522

    Article  PubMed  CAS  Google Scholar 

  • Houghton PJ, Morton CL et al (2008a) Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 50(4):799–805

    Article  PubMed  Google Scholar 

  • Houghton PJ, Morton CL et al (2008b) Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer 50(1):37–45

    Article  PubMed  Google Scholar 

  • Hu Y, Liu Y et al (2004) Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 36(5):453–461

    Article  PubMed  CAS  Google Scholar 

  • Iwai T, Yokota S et al (1999) Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children’s Cancer and Leukemia Study Group, Japan. Leukemia: Official J Leukemia Soc Am Leukemia Res Fund, UK 13(1):38–43

    Article  CAS  Google Scholar 

  • Kantarjian H, Issa JP et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106(8):1794–1803

    Article  PubMed  CAS  Google Scholar 

  • Khan R, Aggerholm A et al (2006) A pharmacodynamic study of 5-azacytidine in the P39 cell line. Exp Hematol 34(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Kharas MG, Deane JA et al (2004) Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103(11):4268–4275

    Article  PubMed  CAS  Google Scholar 

  • Kitada S, Pedersen IM et al (2002) Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 21(21):3459–3474

    Article  PubMed  CAS  Google Scholar 

  • Kiyoi H, Towatari M et al (1998) Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia: Off J Leukemia Soc Am Leukemia Res Fund, UK 12(9):1333–1337

    Article  CAS  Google Scholar 

  • Klisovic MI, Maghraby EA et al (2003) Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 17(2):350–358

    Article  PubMed  CAS  Google Scholar 

  • Knapper S, Burnett AK et al (2006) A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108(10):3262–3270

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Horibe K et al (1999) Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 33(6):525–529

    Article  PubMed  CAS  Google Scholar 

  • Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2): 216–233

    Article  PubMed  CAS  Google Scholar 

  • Kottaridis PD, Gale RE et al (2002) Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 100(7):2393–2398

    Article  PubMed  CAS  Google Scholar 

  • Kuang SQ, Tong WG et al (2008) Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22(8):1529–1538

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DJ, Chen Q et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110(9):3281–3290

    Article  PubMed  CAS  Google Scholar 

  • LaCasse EC, Cherton-Horvat GG et al (2006) Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 12(17):5231–5241

    Article  PubMed  CAS  Google Scholar 

  • Larson RA, Sievers EL et al (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104(7):1442–1452

    Article  PubMed  CAS  Google Scholar 

  • le Viseur C, Hotfilder M et al (2008) In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14(1):47–58

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Lee JH et al (2005a) Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia: Off J Leukemia Soc Am, Leukemia Res Fund, UK 19(9):1509–1516

    Article  CAS  Google Scholar 

  • Lee S, Kim YJ et al (2005b) The effect of first-line imatinib interim therapy on the outcome of allogeneic stem cell transplantation in adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 105(9):3449–3457

    Article  PubMed  CAS  Google Scholar 

  • Leegwater PA, Lambooy LH et al (1997) DNA methylation patterns in the calcitonin gene region at first diagnosis and at relapse of acute lymphoblastic leukemia (ALL). Leukemia 11(7):971–978

    Article  PubMed  CAS  Google Scholar 

  • Lemaire M, Chabot GG et al (2008) Importance of dose-schedule of 5-aza-2′-deoxycytidine for epigenetic therapy of cancer. BMC Cancer 8:128

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Small D (2005) FLT3 tyrosine kinase inhibitors. Int J Hematol 82(2):100–107

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Allebach J et al (2002) A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99(11):3885–3891

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Pham R et al (2004) In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 104(4):1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Murphy KM et al (2005a) Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood 106(2):673–680

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Smith BD et al (2005b) A Randomized, Open-Label Study of Lestaurtinib (CEP-701), an Oral FLT3 Inhibitor, administered in sequence with chemotherapy in patients with relapsed AML harboring FLT3 Activating mutations: clinical response correlates with successful FLT3 inhibition. ASH Annu Meeting Abstracts 106(11):403

    Google Scholar 

  • Lewis HD, Leveridge M et al (2007) Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14(2):209–219

    Article  PubMed  CAS  Google Scholar 

  • Lin RJ, Nagy L et al (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391(6669):811–814

    Article  PubMed  CAS  Google Scholar 

  • Linenberger ML, Hong T et al (2001) Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 98(4):988–994

    Article  PubMed  CAS  Google Scholar 

  • Lubbert M, Minden M (2005) Decitabine in acute myeloid leukemia. Semin Hematol 42(3 Suppl 2):S38–42

    Article  PubMed  Google Scholar 

  • Marks PA, Richon VM et al (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168

    Article  PubMed  CAS  Google Scholar 

  • Melki JR, Clark SJ (2002) DNA methylation changes in leukaemia. Semin Cancer Biol 12(5):347–357

    Article  PubMed  CAS  Google Scholar 

  • Melki JR, Vincent PC et al (1999a) Cancer-specific region of hypermethylation identified within the HIC1 putative tumour suppressor gene in acute myeloid leukaemia. Leukemia 13(6):877–883

    Article  PubMed  CAS  Google Scholar 

  • Melki JR, Vincent PC et al (1999b) Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 59(15):3730–3740

    PubMed  CAS  Google Scholar 

  • Melki JR, Vincent PC et al (2000) Hypermethylation of E-cadherin in leukemia. Blood 95(10):3208–3213

    PubMed  CAS  Google Scholar 

  • Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27(13):2278–2287

    Article  PubMed  CAS  Google Scholar 

  • Meshinchi S, Arceci RJ (2007) Prognostic factors and risk-based therapy in pediatric acute myeloid leukemia. Oncologist 12(3):341–355

    Article  PubMed  Google Scholar 

  • Meshinchi S, Woods WG et al (2001) Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 97(1):89–94

    Article  PubMed  CAS  Google Scholar 

  • Meshinchi S, Alonzo TA et al (2006) Clinical implications of FLT3 mutations in pediatric AML. Blood 108(12): 3654–3661

    Article  PubMed  CAS  Google Scholar 

  • Messinger Y, Gaynon P et al (2010) Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer Aug;55(2):254–9

    Google Scholar 

  • Michor F, Hughes TP et al (2005) Dynamics of chronic myeloid leukaemia. Nature 435(7046):1267

    Article  PubMed  CAS  Google Scholar 

  • Milano J, McKay J et al (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82(1):341–358

    Article  PubMed  CAS  Google Scholar 

  • Mody R, Li S et al (2008) Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Blood 111(12):5515

    Article  PubMed  CAS  Google Scholar 

  • Momparler RL (2005) Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin Hematol 42(3 Suppl 2):S9–16

    Article  PubMed  CAS  Google Scholar 

  • Momparler RL, Rivard GE et al (1985) Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol Ther 30(3):277–286

    Article  PubMed  CAS  Google Scholar 

  • Moricke A, Reiter A et al (2008) Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111(9):4477–4489

    Article  PubMed  CAS  Google Scholar 

  • Motzer RJ, Escudier B et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    Article  PubMed  CAS  Google Scholar 

  • Mulrooney DA, Dover DC et al (2008) Twenty years of follow-up among survivors of childhood and young adult acute myeloid leukemia: a report from the Childhood Cancer Survivor Study. Cancer 112(9):2071

    Article  PubMed  Google Scholar 

  • Nguyen K, Devidas M et al (2008) Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia: Off J Leukemia Soc Am Leukemia Res Fund, UK 22(12):2142

    Article  CAS  Google Scholar 

  • Nishioka C, Ikezoe T et al (2008) Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 22(12):2159–2168

    Article  PubMed  CAS  Google Scholar 

  • O’Hare T, Walters DK et al (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65(11):4500–4505

    Article  PubMed  Google Scholar 

  • Oki Y, Aoki E et al (2007) Decitabine–bedside to bench. Crit Rev Oncol Hematol 61(2):140–152

    Article  PubMed  Google Scholar 

  • Oliansky DM, Rizzo JD et al (2007) The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute myeloid leukemia in children: an evidence-based review. Biol Blood Marrow Transplant: J American Soc Blood Marrow Transplant 13(1):1

    Article  Google Scholar 

  • Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14(6):1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Orlowski R, Kuhn DJ, Small GW et al (2005a) Identificatin of novel inhibitors that specifically target the immunoproteasomes, and selectively induce apoptosis in multiple myeloma and other immunoproteasome-expressing model systems. Blood 106:76a

    Google Scholar 

  • Orlowski RZ, Voorhees PM et al (2005b) Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 105(8):3058–3065

    Article  PubMed  CAS  Google Scholar 

  • Orlowski R, Stewart K, Vallone M et al (2007) Safety and antitumor efficacy of the proteasome inhibitor carfilzomib (PR-171) dosed for five consecutive days in hematologic malignancies: phase I results. Blood Cells, Mol Dis 110:409

    Google Scholar 

  • Ottmann OG, Druker BJ et al (2002) A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 100(6):1965–1971

    Article  PubMed  CAS  Google Scholar 

  • Palomero T, McKenna K et al (2006) Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias. Leukemia 20(11):1963–1966

    Article  PubMed  CAS  Google Scholar 

  • Park S, Chapuis N et al (2008) PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 22(9):1698–1706

    Article  PubMed  CAS  Google Scholar 

  • Pollard JA, Alonzo TA et al (2006) FLT3 internal tandem duplication in CD34+/CD33- precursors predicts poor outcome in acute myeloid leukemia. Blood 108(8):2764–2769

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Cheng C et al (2003) Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 349(7):640

    Article  PubMed  Google Scholar 

  • Pui CH, Relling MV et al (2004) Acute lymphoblastic leukemia. N Engl J Med 350(15):1535

    Article  PubMed  CAS  Google Scholar 

  • Quesnel B, Fenaux P (1999) P15INK4b gene methylation and myelodysplastic syndromes. Leuk Lymphoma 35(5–6):437–443

    Article  PubMed  CAS  Google Scholar 

  • Raetz EA, Cairo MS et al (2008) Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group pilot study. J Clin Oncol 26(22):3756–3762

    Article  PubMed  CAS  Google Scholar 

  • Ravandi F, Cortes JE et al (2010) Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 28(11):1856–1862

    Article  PubMed  CAS  Google Scholar 

  • Real PJ, Ferrando AA (2009) NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia 23(8):1374–1377

    Article  PubMed  CAS  Google Scholar 

  • Real PJ, Tosello V et al (2009) Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 15(1):50–58

    Article  PubMed  CAS  Google Scholar 

  • Rheingold SR, Sacks N, Chang YJ et al (2007) A phase I trial of Sirolimus (Rapamycin) in pediatric patients with relapsed/refractory leukemia. Blood 110:2834

    Google Scholar 

  • Rivard GE, Momparler RL et al (1981) Phase I study on 5-aza-2′-deoxycytidine in children with acute leukemia. Leuk Res 5(6):453–462

    Article  PubMed  CAS  Google Scholar 

  • Rivett AJ, Hearn AR (2004) Proteasome function in antigen presentation: immunoproteasome complexes, peptide production, and interactions with viral proteins. Curr Protein Pept Sci 5(3):153–161

    Article  PubMed  CAS  Google Scholar 

  • Rizzieri DA, Feldman E et al (2008) A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 14(9):2756–2762

    Article  PubMed  CAS  Google Scholar 

  • Rubnitz JE (2008) Childhood acute myeloid leukemia. Curr Treat Opt Oncol 9(1):95

    Article  Google Scholar 

  • Saydam G, Celikkaya H, Cole P, Bertino JR, Ercikan-Abali EA (2005) mTOR inhibition leads to increased sensitivity to methotrexate. Proc Amer Assoc Cancer Res 46:3303

    Google Scholar 

  • Schafer ES, Irizarry R et al (2009) Promoter hypermethylation in MLL-r leukemia: biology and therapeutic targeting. ASH Ann Meeting Abstracts 114(22):3472

    Google Scholar 

  • Schimmer AD, Welsh K et al (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5(1):25–35

    Article  PubMed  CAS  Google Scholar 

  • Schimmer AD, O’Brien S et al (2008) A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 14(24):8295–8301

    Article  PubMed  CAS  Google Scholar 

  • Schimmer AD, Estey EH et al (2009) Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol 27(28):4741–4746

    Article  PubMed  CAS  Google Scholar 

  • Scholz C, Nimmrich I et al (2005) Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Ann Hematol 84(4):236–244

    Article  PubMed  CAS  Google Scholar 

  • Schultz KR, Bowman WP et al (2009) Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol 27(31):5175–5181

    Article  PubMed  CAS  Google Scholar 

  • Shah NP, Tran C et al (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science (New York) 305(5682): 399–401

    Article  CAS  Google Scholar 

  • Sievers EL, Larson RA et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19(13):3244–3254

    PubMed  CAS  Google Scholar 

  • Silverman LR, Demakos EP et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20(10):2429–2440

    Article  PubMed  CAS  Google Scholar 

  • Silverman LR, McKenzie DR et al (2006) Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 24(24):3895–3903

    Article  PubMed  CAS  Google Scholar 

  • Smith BD, Levis M et al (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103(10):3669–3676

    Article  PubMed  CAS  Google Scholar 

  • Spunt SL, Grupp S, Vik T (2007) Phase I, safety, pharmacokinetic, exploratory biomarker study of intravenous temsirolimus in children with advanced solid tumors. Pediatr Blood Cancer

    Google Scholar 

  • Stam RW, den Boer ML et al (2005) Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 106(7):2484–2490

    Article  PubMed  CAS  Google Scholar 

  • Stone RM, DeAngelo DJ et al (2005) Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105(1):54–60

    Article  PubMed  CAS  Google Scholar 

  • Taketani T, Taki T et al (2004) FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 103(3):1085–1088

    Article  PubMed  CAS  Google Scholar 

  • Talpaz M, Shah NP et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354(24):2531–2541

    Article  PubMed  CAS  Google Scholar 

  • Tamm I, Kornblau SM et al (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6(5):1796–1803

    PubMed  CAS  Google Scholar 

  • Tamm I, Richter S et al (2004a) High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res 10(11):3737–3744

    Article  PubMed  CAS  Google Scholar 

  • Tamm I, Richter S et al (2004b) XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J 5(6):489–495

    Article  PubMed  CAS  Google Scholar 

  • Taylor KH, Pena-Hernandez KE et al (2007) Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res 67(6):2617–2625

    Article  PubMed  CAS  Google Scholar 

  • Teachey DT, Obzut DA et al (2006) The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 107(3):1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Teachey DT, Sheen C et al (2008) mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. Blood 112(5):2020–2023

    Article  PubMed  CAS  Google Scholar 

  • Tenen DG, Hromas R et al (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90(2):489–519

    PubMed  CAS  Google Scholar 

  • Thiede C, Steudel C et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99(12):4326–4335

    Article  PubMed  CAS  Google Scholar 

  • Thomas DA, Faderl S et al (2004) Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood 103(12): 4396–4407

    Article  PubMed  CAS  Google Scholar 

  • Tong WG, Wei Y et al (2010) Preclinical antileukemia activity of JNJ-26481585, a potent second-generation histone deacetylase inhibitor. Leuk Res 34(2):221–8

    Google Scholar 

  • Tsellou E, Troungos C et al (2005) Hypermethylation of CpG islands in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur J Cancer 41(4):584–589

    Article  PubMed  CAS  Google Scholar 

  • Wayne AS, Bhojwani D et al (2009) Phase I clinical trial of the anti-cd22 immunotoxin CAT-8015 (HA22) in pediatric acute lymphoblastic leukemia (abstr 838). Blood 114:345

    Google Scholar 

  • Wei G, Twomey D et al (2006) Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10(4):331–342

    Article  PubMed  CAS  Google Scholar 

  • Weng AP, Aster JC (2004) Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 14(1):48–54

    Article  PubMed  CAS  Google Scholar 

  • Weng AP, Ferrando AA et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271

    Article  PubMed  CAS  Google Scholar 

  • Whitman SP, Archer KJ et al (2001) Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 61(19):7233–7239

    PubMed  CAS  Google Scholar 

  • Whitman SP, Liu S et al (2005) The MLL partial tandem duplication: evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 106(1):345–352

    Article  PubMed  CAS  Google Scholar 

  • Wilson WH, O’Connor OA et al (2009) Phase 1/2a study of ABT-263 in relapsed or refractory lymphoid malignancies. ASH Annu Meeting Abstracts 114(22):1711

    Google Scholar 

  • Wuchter C, Richter S et al (2004) Differences in the expression pattern of apoptosis-related molecules between childhood and adult de novo acute myeloid leukemia. Haematologica 89(3):363–364

    PubMed  CAS  Google Scholar 

  • Xu Q, Simpson SE et al (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102(3):972–980

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Thompson JE et al (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106(13):4261–4268

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kiyoi H et al (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97(8):2434–2439

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Huang Q et al (2009) Promoter CpG methylation of oestrogen receptors in leukaemia. Biosci Rep 29(4): 211–216

    Article  PubMed  CAS  Google Scholar 

  • Yee KW, Zeng Z et al (2006) Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 12(17):5165–5173

    Article  PubMed  CAS  Google Scholar 

  • Zarrinkar PP, Gunawardane RN et al (2009) AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114(14):2984–2992

    Article  PubMed  CAS  Google Scholar 

  • Zheng R, Levis M et al (2004) FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 103(1):267–274

    Article  PubMed  CAS  Google Scholar 

  • Zugmaier G, Gokbuget N et al (2009) Report of a phase II trial of single-agent BiTE antibody Blinatumomab in patients with minimal residual disease positive B-precursor acute lymphoblastic leukemia (abstr 840). Blood 114:346

    Article  CAS  Google Scholar 

  • Zwaan CM, Reinhardt D et al (2003) Gemtuzumab ozogamicin: first clinical experiences in children with relapsed/refractory acute myeloid leukemia treated on compassionate-use basis. Blood 101(10):3868–3871

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Brown, P., Reaman, G.H., Seibel, N.L., Kearns, P. (2011). Promising Targeted Agents. In: Reaman, G., Smith, F. (eds) Childhood Leukemia. Pediatric Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13781-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13781-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13780-8

  • Online ISBN: 978-3-642-13781-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics