Skip to main content

Classification and Treatment of Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Childhood Leukemia

Part of the book series: Pediatric Oncology ((PEDIATRICO))

  • 2521 Accesses

Abstract

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and accounts for 25% of cancers that occur before 15 years of age and 19% among persons less than 20 years of age (Ries et al. 1999). Based on the most recent estimates from the Surveillance, Epidemiology and End Results (SEER) Program of the National Cancer Institute (NCI), there are about 3,000 cases of ALL diagnosed in the United States each year among persons less than 20 years of age. The incidence peaks at 80–90 cases/million at 2–3 years of age, begins to drop abruptly at age 5–6 years reaching a rate of about 20 cases/million at 8–11 years of age, and then gradually decreases to an annual rate of about 10 cases/million by 20 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abshire TC, Buchanan GR et al (1992) Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 6(5):357–362

    PubMed  CAS  Google Scholar 

  • ACUTE LEUKEMIA GROUP B, Freireich EJ et al (1963) The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: a model for evaluation of other potentially useful therapy. Blood 21(6):699–716

    Google Scholar 

  • Administration, U. S. F. a. D. (2007) Guidance for industry: clinical trial endpoints for the approval of cancer drugs and biologics. Silver Spring, MD

    Google Scholar 

  • Agency EM (2008) Methodological considerations for using progression free survival (PFS) as primary endpoint in confirmatory trials for registration. www.emea.europa.eu/pdfs/human/ewp/2799408en.pdf

  • Angiolillo AL, Yu AL et al (2009) A phase II study of Campath-1H in children with relapsed or refractory acute lymphoblastic leukemia: a Children’s Oncology Group report. Pediatr Blood Cancer 53(6):978–983

    Article  PubMed  Google Scholar 

  • Arico M, Valsecchi MG et al (2000) Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 342(14):998–1006

    Article  PubMed  CAS  Google Scholar 

  • Arico M, Schrappe M et al (2008) Clinical outcome of 640 children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. Blood (ASH Annu Meet Abstr) 112(11): 568

    Google Scholar 

  • Atkinson K, Thomas PR et al (1976) Radiosensitivity of the acute leukaemic infiltrate. Eur J Cancer 12(7):535–540

    PubMed  CAS  Google Scholar 

  • Attarbaschi A, Mann G et al (2008) Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol 26(18):3046–3050

    Article  PubMed  CAS  Google Scholar 

  • Aur RJ, Simone JV et al (1972) A comparative study of central nervous system irradiation and intensive chemotherapy early in remission of childhood acute lymphocytic leukemia. Cancer 29(2):381–391

    Article  PubMed  CAS  Google Scholar 

  • Aversa F, Reisner Y et al (2008) The haploidentical option for high-risk haematological malignancies. Blood Cells Mol Dis 40(1):8–12

    Article  PubMed  Google Scholar 

  • Bader P, Kreyenberg H et al (2009) Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 27(3):377–384

    Article  PubMed  Google Scholar 

  • Balduzzi A, Valsecchi MG et al (2005) Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 366(9486):635–642

    Article  PubMed  Google Scholar 

  • Barredo JC, Devidas M et al (2006) Isolated CNS relapse of acute lymphoblastic leukemia treated with intensive systemic chemotherapy and delayed CNS radiation: a pediatric oncology group study. J Clin Oncol 24(19):3142–3149

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ, Horowitz MM et al (1994) Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med 331(19):1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Behm FG, Raimondi SC et al (1996) Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 87(7):2870–2877

    PubMed  CAS  Google Scholar 

  • Bercovich D, Ganmore I et al (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372(9648):1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Berg SL, Blaney SM et al (2005) Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 23(15):3376–3382

    Article  PubMed  CAS  Google Scholar 

  • Beyermann B, Adams HP et al (1997) Philadelphia chromosome in relapsed childhood acute lymphoblastic leukemia: a matched-pair analysis. Berlin-Frankfurt-Munster Study Group. J Clin Oncol 15(6):2231–2237

    PubMed  CAS  Google Scholar 

  • Biondi A, Valsecchi MG et al (2000) Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia 14(11): 1939–1943

    Article  PubMed  CAS  Google Scholar 

  • Biondi A, Baruchel A et al (2009) The Eleventh International Childhood Acute Lymphoblastic Leukemia Workshop Report: Ponte di Legno, Italy, 6–7 May 2009. Leukemia

    Google Scholar 

  • Blaney SM, Bernstein M et al (2004) Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). J Clin Oncol 22(23):4804–4809

    Article  PubMed  CAS  Google Scholar 

  • Bleyer WA, Sather HN et al (1991) Monthly pulses of vincristine and prednisone prevent bone marrow and testicular relapse in low-risk childhood acute lymphoblastic leukemia: a report of the CCG-161 study by the Childrens Cancer Study Group. J Clin Oncol 9(6):1012–1021

    PubMed  CAS  Google Scholar 

  • Boissel N, Auclerc MF et al (2003) Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol 21(5):774–780

    Article  PubMed  Google Scholar 

  • Borgmann A, Baumgarten E et al (1997) Allogeneic bone marrow transplantation for a subset of children with acute lymphoblastic leukemia in third remission: a conceivable alternative? Bone Marrow Transplant 20(11):939–944

    Article  PubMed  CAS  Google Scholar 

  • Borgmann A, von Stackelberg A et al (2003) Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood 101(10):3835–3839

    Article  PubMed  CAS  Google Scholar 

  • Borkhardt A, Cazzaniga G et al (1997) Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood 90(2):571–577

    PubMed  CAS  Google Scholar 

  • Borowitz MJ, Devidas M et al (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111(12):5477–5485

    Article  PubMed  CAS  Google Scholar 

  • Bostrom BC, Sensel MR et al (2003) Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 101(10):3809–3817

    Article  PubMed  CAS  Google Scholar 

  • Brecher ML, Weinberg V et al (1986) Intermediate dose methotrexate in childhood acute lymphoblastic leukemia resulting in decreased incidence of testicular relapse. Cancer 58(5): 1024–1028

    Article  PubMed  CAS  Google Scholar 

  • Brochstein JA, Kernan NA et al (1987) Allogeneic bone marrow transplantation after hyperfractionated total-body irradiation and cyclophosphamide in children with acute leukemia. N Engl J Med 317(26):1618–1624

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Levis M et al (2006) Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia 20(8):1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Buchanan GR, Boyett JM et al (1991) Improved treatment results in boys with overt testicular relapse during or shortly after initial therapy for acute lymphoblastic leukemia. A Pediatric Oncology group study. Cancer 68(1):48–55

    Article  PubMed  CAS  Google Scholar 

  • Buchanan GR, Rivera GK et al (2000) Alternating drug pairs with or without periodic reinduction in children with acute lymphoblastic leukemia in second bone marrow remission: a Pediatric Oncology Group Study. Cancer 88(5): 1166–1174

    Article  PubMed  CAS  Google Scholar 

  • Buhrer C, Hartmann R et al (1993) Superior prognosis in combined compared to isolated bone marrow relapses in salvage therapy of childhood acute lymphoblastic leukemia. Med Pediatr Oncol 21(7):470–476

    Article  PubMed  CAS  Google Scholar 

  • Buhrer C, Hartmann R et al (1994) Importance of effective central nervous system therapy in isolated bone marrow relapse of childhood acute lymphoblastic leukemia. BFM (Berlin-Frankfurt-Munster) Relapse Study Group. Blood 83(12):3468–3472

    PubMed  CAS  Google Scholar 

  • Burzykowski T, Buyse M et al (2008) Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J Clin Oncol 26(12):1987–1992

    Article  PubMed  CAS  Google Scholar 

  • Carnahan J, Stein R et al (2007) Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol 44(6): 1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Castillo LA, Craft AW et al (1990) Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukaemia. Med Pediatr Oncol 18(3):185–189

    Article  PubMed  CAS  Google Scholar 

  • Cave H, van der Werff ten Bosch J et al (1998) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med 339(9):591–598

    Google Scholar 

  • Chessells JM (1998) Relapsed lymphoblastic leukaemia in children: a continuing challenge. Br J Haematol 102(2):423–438

    Article  PubMed  CAS  Google Scholar 

  • Chessells JM, Leiper AD et al (1994) A second course of treatment for childhood acute lymphoblastic leukaemia: long-term follow-up is needed to assess results. Br J Haematol 86(1):48–54

    Article  PubMed  CAS  Google Scholar 

  • Chessells JM, Hall E et al (1998) The impact of age on outcome in lymphoblastic leukaemia; MRC UKALL X and XA compared: a report from the MRC Paediatric and Adult Working Parties. Leukemia 12(4):463–473

    Article  PubMed  CAS  Google Scholar 

  • Chessells JM, Harrison CJ et al (2002) Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987–1999. Br J Haematol 117(2):306–314

    Article  PubMed  CAS  Google Scholar 

  • Chessels JM, Swansbury GJ et al (1997) Cytogenetics and prognosis in childhood lymphoblastic leukaemia: results of MRC UKALL X. Medical Research Council Working Party in Childhood Leukaemia. Br J Haematol 99(1):93–100

    Article  PubMed  CAS  Google Scholar 

  • Conter V, Valsecchi MG et al (2007) Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet 369(9556):123–131

    Article  PubMed  CAS  Google Scholar 

  • Conter V, Arico M et al (2010) Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia 24(2):255–264

    Article  PubMed  CAS  Google Scholar 

  • Coustan-Smith E, Sancho J et al (2000) Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 96(8):2691–2696

    PubMed  CAS  Google Scholar 

  • Coustan-Smith E, Mullighan CG et al (2009) Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10(2):147–156

    Article  PubMed  CAS  Google Scholar 

  • Crist W, Boyett J et al (1986) Clinical and biologic features predict poor prognosis in acute lymphoid leukemias in children and adolescents: a Pediatric Oncology Group review. Med Pediatr Oncol 14(3):135–139

    Article  PubMed  CAS  Google Scholar 

  • Culbert SJ, Shuster JJ et al (1991) Remission induction and continuation therapy in children with their first relapse of acute lymphoid leukemia. A Pediatric Oncology Group study. Cancer 67(1):37–42

    Article  PubMed  CAS  Google Scholar 

  • Dahlke J, Kroger N et al (2006) Comparable results in patients with acute lymphoblastic leukemia after related and unrelated stem cell transplantation. Bone Marrow Transplant 37(2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Daser A, Rabbitts TH (2005) The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 15(3):175–188

    Article  PubMed  CAS  Google Scholar 

  • de Bont JM, Holt B et al (2004) Significant difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric vs adult protocols in the Netherlands. Leukemia 18(12):2032–2035

    Article  PubMed  Google Scholar 

  • De Gruttola VG, Clax P et al (2001) Considerations in the evaluation of surrogate endpoints in clinical trials. summary of a National Institutes of Health workshop. Control Clin Trials 22(5):485–502

    Article  PubMed  Google Scholar 

  • De Lorenzo P, Antolini L et al (2009) Evaluation of alternative prognostic stratifications by prediction accuracy measures on individual survival with application to childhood leukaemia. Eur J Cancer 45(8):1432–1437

    Article  PubMed  Google Scholar 

  • DeAngelo DJ, Dahlberg S et al (2007) A multicenter phase II study using a dose intensified pediatric regimen in adults with untreated acute lymphoblastic leukemia. Blood 110:587

    Article  CAS  Google Scholar 

  • Dhani N, Tu D et al (2009) Alternate endpoints for screening phase II studies. Clin Cancer Res 15(6):1873–1882

    Article  PubMed  CAS  Google Scholar 

  • Domenech C, Mercier M et al (2008) First isolated extramedullary relapse in children with B-cell precursor acute lymphoblastic leukaemia: results of the Cooprall-97 study. Eur J Cancer 44(16):2461–2469

    Article  PubMed  Google Scholar 

  • Dopfer R, Henze G et al (1991) Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM- and CoALL-protocols: results of the German Cooperative Study. Blood 78(10): 2780–2784

    PubMed  CAS  Google Scholar 

  • Dreyer ZE, Dinndorf P et al (2007a) Unexpected toxicity with intensified induction in infant acute lymphoid leukemia. Blood (ASH Annu Meet Abstr) 110(11):852

    Google Scholar 

  • Dreyer ZE, Dinndorf P et al (2007b) Hematopoietic stem cell transplant (HSCT) versus intensive chemotherapy in infant acute lymphoblastic leukemia (ALL). J Clin Oncol 25(18s):9514

    Google Scholar 

  • Druker BJ (2009) Perspectives on the development of imatinib and the future of cancer research. Nat Med 15(10):1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Dunsmore KP, Devidas M et al (2008) Nelarabine in combination with intensive modified BFM AALL00P2: a pilot study for the treatment of high-risk T-ALL a report from the Children’s Oncology Group. J Clin Oncol (ASCO Annu Meet Proc 26:539s

    Google Scholar 

  • Eapen M, Raetz E et al (2006a) Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood 107(12):4961–4967

    Article  PubMed  CAS  Google Scholar 

  • Eapen M, Rubinstein P et al (2006b) Comparable long-term survival after unrelated and HLA-matched sibling donor hematopoietic stem cell transplantations for acute leukemia in children younger than 18 months. J Clin Oncol 24(1): 145–151

    Article  PubMed  Google Scholar 

  • Eapen M, Zhang MJ et al (2008) Outcomes after HLA-matched sibling transplantation or chemotherapy in children with acute lymphoblastic leukemia in a second remission after an isolated central nervous system relapse: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Leukemia 22(2):281–286

    Article  PubMed  CAS  Google Scholar 

  • Eckert C, Biondi A et al (2001) Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 358(9289):1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Einsiedel HG, von Stackelberg A et al (2005) Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 23(31):7942–7950

    Article  PubMed  Google Scholar 

  • Evans PA, Short MA et al (1998) Residual disease detection using fluorescent polymerase chain reaction at 20 weeks of therapy predicts clinical outcome in childhood acute lymphoblastic leukemia. J Clin Oncol 16(11):3616–3627

    PubMed  CAS  Google Scholar 

  • Farber S, Diamond LK (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 238(23):787–793

    Article  PubMed  CAS  Google Scholar 

  • Fleming TR, DeMets DL (1996) Surrogate end points in clinical trials: are we being misled? Ann Intern Med 125(7):605–613

    PubMed  CAS  Google Scholar 

  • Fleming TR, Rothmann MD et al (2009) Issues in using progression-free survival when evaluating oncology products. J Clin Oncol 27(17):2874–2880

    Article  PubMed  Google Scholar 

  • Fletcher JA, Lynch EA et al (1991) Translocation (9;22) is associated with extremely poor prognosis in intensively treated children with acute lymphoblastic leukemia. Blood 77(3): 435–439

    PubMed  CAS  Google Scholar 

  • Flohr T, Schrauder A et al (2008) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 22(4):771–782

    Article  PubMed  CAS  Google Scholar 

  • Forestier E, Izraeli S et al (2008) Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood 111(3):1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Freeman AI, Weinberg V et al (1983) Comparison of intermediate-dose methotrexate with cranial irradiation for the post-induction treatment of acute lymphocytic leukemia in children. N Engl J Med 308(9):477–484

    Article  PubMed  CAS  Google Scholar 

  • Gajjar A, Ribeiro R et al (1995) Persistence of circulating blasts after 1 week of multiagent chemotherapy confers a poor prognosis in childhood acute lymphoblastic leukemia. Blood 86(4):1292–1295

    PubMed  CAS  Google Scholar 

  • Galimberti S, Sasieni P et al (2002) A weighted Kaplan-Meier estimator for matched data with application to the comparison of chemotherapy and bone-marrow transplant in leukaemia. Stat Med 21(24):3847–3864

    Article  PubMed  Google Scholar 

  • Gassas A, Sung L et al (2006) Comparative outcome of hematopoietic stem cell transplantation for pediatric acute lymphoblastic leukemia following cyclophosphamide and total body irradiation or VP16 and total body irradiation conditioning regimens. Bone Marrow Transplant 38(11): 739–743

    Article  PubMed  CAS  Google Scholar 

  • Gassas A, Sung L et al (2007) Graft-versus-leukemia effect in hematopoietic stem cell transplantation for pediatric acute lymphoblastic leukemia: significantly lower relapse rate in unrelated transplantations. Bone Marrow Transplant 40(10): 951–955

    Article  PubMed  CAS  Google Scholar 

  • Gaynon PS, Bleyer WA et al (1990) Day 7 marrow response and outcome for children with acute lymphoblastic leukemia and unfavorable presenting features. Med Pediatr Oncol 18(4): 273–279

    Article  PubMed  CAS  Google Scholar 

  • Gaynon PS, Steinherz PG et al (1993) Improved therapy for children with acute lymphoblastic leukemia and unfavorable presenting features: a follow-up report of the Childrens Cancer Group Study CCG-106. J Clin Oncol 11(11): 2234–2242

    PubMed  CAS  Google Scholar 

  • Gaynon PS, Desai AA et al (1997) Early response to therapy and outcome in childhood acute lymphoblastic leukemia: a review. Cancer 80(9):1717–1726

    Article  PubMed  CAS  Google Scholar 

  • Gaynon PS, Qu RP et al (1998) Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse – the Children’s Cancer Group experience. Cancer 82(7):1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Gaynon PS, Trigg ME et al (2000) Children’s Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia 14(12):2223–2233

    Article  PubMed  CAS  Google Scholar 

  • Gaynon PS, Angiolillo AL et al (2010) Long-term results of the Children’s Cancer Group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group report. Leukemia 24(2):285–297

    Article  PubMed  CAS  Google Scholar 

  • Gluckman E, Rocha V (2008) Indications and results of cord blood transplant in children with leukemia. Bone Marrow Transplant 41(Suppl 2):S80–82

    Article  PubMed  Google Scholar 

  • Goldberg JM, Silverman LB et al (2003) Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 21(19):3616–3622

    Article  PubMed  Google Scholar 

  • Goldstone AH, Richards SM et al (2008) In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood 111(4):1827–1833

    Article  PubMed  CAS  Google Scholar 

  • Goulden NJ, Knechtli CJ et al (1998) Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. Br J Haematol 100(1):235–244

    Article  PubMed  CAS  Google Scholar 

  • Greaves MF, Wiemels J (2003) Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3(9): 639–649

    Article  PubMed  CAS  Google Scholar 

  • Grundy RG, Leiper AD et al (1997) Survival and endocrine outcome after testicular relapse in acute lymphoblastic leukaemia. Arch Dis Child 76(3):190–196

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn N, Acquaviva C et al (2007) Submicroscopic bone marrow involvement in isolated extramedullary relapses in childhood acute lymphoblastic leukemia: a more precise definition of “isolated” and its possible clinical implications, a collaborative study of the Resistant Disease Committee of the International BFM study group. Blood 110(12): 4022–4029

    Article  PubMed  CAS  Google Scholar 

  • Handgretinger R, Chen X et al (2007) Feasibility and outcome of reduced-intensity conditioning in haploidentical transplantation. Ann NY Acad Sci 1106:279–289

    Article  PubMed  CAS  Google Scholar 

  • Harker-Murray PD, Thomas AJ et al (2008) Allogeneic hematopoietic cell transplantation in children with relapsed acute lymphoblastic leukemia isolated to the central nervous system. Biol Blood Marrow Transplant 14(6): 685–692

    Article  PubMed  CAS  Google Scholar 

  • Harris MB, Shuster JJ et al (1992) Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 79(12):3316–3324

    PubMed  CAS  Google Scholar 

  • Harrison CJ (2009) Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 144(2): 147–156

    Article  PubMed  Google Scholar 

  • Hastings C, Sather HN et al (2006) Outcomes in children and adolescents with a markedly elevated white blood cell count (>200, 000) at diagnosis of high risk acute lymphoblastic leukemia (ALL): a report from the Children’s Oncology Group. Blood (ASH Annu Meet Abstr) 108(11):1870

    Google Scholar 

  • Heerema NA, Nachman JB et al (1999) Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Blood 94(12):4036–4045

    PubMed  CAS  Google Scholar 

  • Heerema NA, Sather HN et al (2000) Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol 18(9):1876–1887

    PubMed  CAS  Google Scholar 

  • Henze G (1997) Childhood acute lymphoblastic leukaemia. Eur J Cancer 33(1):8–9

    Article  PubMed  CAS  Google Scholar 

  • Henze G, Langermann HJ et al (1981a) The BFM 76/79 acute lymphoblastic leukemia therapy study (author’s transl). Klin Pädiatr 193(3):145–154

    Article  PubMed  CAS  Google Scholar 

  • Henze G, Langermann HJ et al (1981b) Thymic involvement and initial white blood count in childhood acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol 3(4):369–376

    PubMed  CAS  Google Scholar 

  • Henze G, Fengler R et al (1989) Chemotherapy for bone marrow relapse of childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol 24(Suppl 1):S16–19

    PubMed  Google Scholar 

  • Henze G, Fengler R et al (1991) Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85). A relapse study of the BFM group. Blood 78(5):1166–1172

    PubMed  CAS  Google Scholar 

  • Herold R, von Stackelberg A et al (2004) Acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group (ALL-REZ BFM) experience: early treatment intensity makes the difference. J Clin Oncol 22(3):569–570, author reply 570–561

    Article  PubMed  Google Scholar 

  • Hijiya N, Gaynon P et al (2009) A multi-center phase I study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia 23(12):2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Hoering A, Leblanc M et al (2008) Randomized phase III clinical trial designs for targeted agents. Clin Cancer Res 14(14):4358–4367

    Article  PubMed  CAS  Google Scholar 

  • Horton TM, Gannavarapu A et al (2006) Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 58(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Horton TM, Pati D et al (2007) A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin Cancer Res 13(5):1516–1522

    Article  PubMed  CAS  Google Scholar 

  • Huget F, Pigneux A et al (2008) Outcome of a pediatric-inspired therapy in adults with Philadelphia chromosome-neagative acute lymphoblastic leukemia (ALL): final results for the GRAALL-2003 study. J Clin Oncol (ASCO Annu Meet Proc) 26:373s

    Google Scholar 

  • Hunger SP (1996) Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood 87(4):1211–1224

    PubMed  CAS  Google Scholar 

  • Hunger SP, Tkachuk DC et al (1993) HRX involvement in de novo and secondary leukemias with diverse chromosome 11q23 abnormalities. Blood 81(12):3197–3203

    PubMed  CAS  Google Scholar 

  • Hunger SP, Devaraj PE et al (1994) Two types of genomic rearrangements create alternative E2A-HLF fusion proteins in t(17;19)-ALL. Blood 83(10):2970–2977

    PubMed  CAS  Google Scholar 

  • Hunger SP, Winick NJ et al (2005) Therapy of low-risk subsets of childhood acute lymphoblastic leukemia: when do we say enough? Pediatr Blood Cancer 45(7):876–880

    Article  PubMed  Google Scholar 

  • Hunger SP, Sung L et al (2009) Treatment strategies and regimens of graduated intensity for childhood acute lymphoblastic leukemia in low-income countries: a proposal. Pediatr Blood Cancer 52(5):559–565

    Article  PubMed  Google Scholar 

  • Jahnukainen K, Salmi TT et al (1998) The clinical indications for identical pathogenesis of isolated and non-isolated testicular relapses in acute lymphoblastic leukaemia. Acta Paediatr 87(6):638–643

    Article  PubMed  CAS  Google Scholar 

  • Jeha S, Gandhi V et al (2004) Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood 103(3):784–789

    Article  PubMed  CAS  Google Scholar 

  • Jeha S, Pei D et al (2009) Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia 23(8):1406–1409

    Article  PubMed  CAS  Google Scholar 

  • Kager L, Cheok M et al (2005) Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest 115(1):110–117

    PubMed  CAS  Google Scholar 

  • Kamps WA, van der Pal-de Bruin KM et al (2010) Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. Leukemia 24(2):309–319

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Chen IM et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7): 1394–1405

    Article  PubMed  CAS  Google Scholar 

  • Kaspers GJ, Pieters R et al (1994) Glucocorticoid resistance in childhood leukemia. Leuk Lymphoma 13(3–4): 187–201

    Article  PubMed  CAS  Google Scholar 

  • Kawamura M, Kikuchi A et al (1995) Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. Blood 85(9):2546–2552

    PubMed  CAS  Google Scholar 

  • Klumper E, Pieters R et al (1995) In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86(10):3861–3868

    PubMed  CAS  Google Scholar 

  • Konrad M, Metzler M et al (2003) Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 101(9):3635–3640

    Article  PubMed  CAS  Google Scholar 

  • Kreyenberg H, Eckert C et al (2009) Immunoglobulin and T-cell receptor gene rearrangements as PCR-based targets are stable markers for monitoring minimal residual disease in acute lymphoblastic leukemia after stem cell transplantation. Leukemia 23(7):1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Lal A, Kwan E et al (1998) Molecular detection of acute lymphoblastic leukaemia in boys with testicular relapse. Mol Pathol 51(5):277–281

    Article  PubMed  CAS  Google Scholar 

  • Land VJ, Thomas PR et al (1985) Comparison of maintenance treatment regimens for first central nervous system relapse in children with acute lymphocytic leukemia. A Pediatric Oncology Group study. Cancer 56(1):81–87

    Article  PubMed  CAS  Google Scholar 

  • Lang P, Handgretinger R (2008) Haploidentical SCT in children: an update and future perspectives. Bone Marrow Transplant 42(Suppl 2):S54–59

    Article  PubMed  Google Scholar 

  • Lange BJ, Bostrom BC et al (2002) Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 99(3):825–833

    Article  PubMed  CAS  Google Scholar 

  • Langlands K, Craig JI et al (1993) Clonal selection in acute lymphoblastic leukaemia demonstrated by polymerase chain reaction analysis of immunoglobulin heavy chain and T-cell receptor delta chain rearrangements. Leukemia 7(7):1066–1070

    PubMed  CAS  Google Scholar 

  • Lanino E, Sacchi N et al (2008) Strategies of the donor search for children with second CR ALL lacking a matched sibling donor. Bone Marrow Transplant 41(Suppl 2):S75–79

    Article  PubMed  Google Scholar 

  • Lawson SE, Harrison G et al (2000) The UK experience in treating relapsed childhood acute lymphoblastic leukaemia: a report on the medical research council UKALLR1 study. Br J Haematol 108(3):531–543

    Article  PubMed  CAS  Google Scholar 

  • Leiper AD, Grant DB et al (1986) Gonadal function after testicular radiation for acute lymphoblastic leukaemia. Arch Dis Child 61(1):53–56

    Article  PubMed  CAS  Google Scholar 

  • Liang DC, Yang CP et al (2010) Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia 24(2): 397–405

    Article  PubMed  CAS  Google Scholar 

  • Lipshultz SE, Rifai N et al (2004) The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351(2):145–153

    Article  PubMed  CAS  Google Scholar 

  • Lo Nigro L, Cazzaniga G et al (1999) Clonal stability in children with acute lymphoblastic leukemia (ALL) who relapsed five or more years after diagnosis. Leukemia 13(2):190–195

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Testi AM et al (2009) Clofarabine, cyclophosphamide and etoposide as single-course re-induction therapy for children with refractory/multiple relapsed acute lymphoblastic leukaemia. Br J Haematol 147(3):371–378

    Article  PubMed  CAS  Google Scholar 

  • Loh ML, Rubnitz JE (2002) TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 9(4):345–352

    Article  PubMed  Google Scholar 

  • Loh ML, Silverman LB et al (1998) Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood 92(12):4792–4797

    PubMed  CAS  Google Scholar 

  • Loh ML, Goldwasser MA et al (2006) Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95-01. Blood 107(11):4508–4513

    Article  PubMed  CAS  Google Scholar 

  • Lori AP, Arcese W et al (2007) Unrelated cord blood transplant in children with high-risk acute lymphoblastic leukemia: a long-term follow-up. Haematologica 92(8):1051–1058

    Article  Google Scholar 

  • MacMillan ML, Davies SM et al (2008) Twenty years of unrelated donor bone marrow transplantation for pediatric acute leukemia facilitated by the National Marrow Donor Program. Biol Blood Marrow Transplant 14(9 Suppl):16–22

    Article  PubMed  Google Scholar 

  • Mahmoud HH, Rivera GK et al (1993) Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med 329(5):314–319

    Article  PubMed  CAS  Google Scholar 

  • Maloney KW, Shuster JJ et al (2000) Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986–1994. Leukemia 14(12):2276–2285

    Article  PubMed  CAS  Google Scholar 

  • Maloney KW, Carroll WL et al (2010) Down syndrome childhood acute lymphoblastic leukemia has a unique spectrum of sentinel cytogenetic lesions that influences treatment outcome: a report from the Children’s Oncology Group. Blood 2010 May 4 ePub

    Google Scholar 

  • Marubini E, Valsecchi MG (1995) Analysing survival data from clinical trials and observational studies. Wiley, Chichester

    Google Scholar 

  • Matloub Y, Angiolillo A et al (2006) Double delayed intensification (DDI) is equivalent to single DI (SDI) in children with National Cancer Institute (NCI) standard-risk acute lymphoblastic leukemia (SR-ALL) Treated on Children’s Cancer Group (CCG) clinical trial 1991 (CCG-1991). Blood (ASH Annu Meet Abstr) 108(11):146

    Google Scholar 

  • Matloub Y, Bostrom BC et al (2008) Escalating dose intravenous methotrexate without leucovorin rescue during interim maintenance is superior to oral methotrexate for children with standard risk acute lymphoblastic leukemia (SR-ALL): Children’s Oncology Group Study 1991. Blood (ASH Annu Meet Abstr) 112(11):9

    Google Scholar 

  • Mehta PA, Davies SM (2008) Allogeneic transplantation for childhood ALL. Bone Marrow Transplant 41(2):133–139

    Article  PubMed  CAS  Google Scholar 

  • Messinger Y (2010) Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL). a report from the therapeutic advances in Childhood Leukemia (TACL) consortium. Pediatr Blood Cancer 55: 254–9

    Google Scholar 

  • Miniero R, Saracco P et al (1995) Relapse after first cessation of therapy in childhood acute lymphoblastic leukemia: a 10-year follow-up study. Italian Association of Pediatric Hematology-Oncology (AIEOP). Med Pediatr Oncol 24(2): 71–76

    Article  PubMed  CAS  Google Scholar 

  • Mitchell CD, Richards SM et al (2005) Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol 129(6): 734–745

    Article  PubMed  CAS  Google Scholar 

  • Mitchell C, Richards S et al (2010) Long-term follow-up of the United Kingdom medical research council protocols for childhood acute lymphoblastic leukaemia, 1980–2001. Leukemia 24(2):406–418

    Article  PubMed  CAS  Google Scholar 

  • Moorman AV, Richards SM et al (2007) Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 109(6):2327–2330

    Article  PubMed  CAS  Google Scholar 

  • Moricke A, Reiter A et al (2008) Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111(9):4477–4489

    Article  PubMed  CAS  Google Scholar 

  • Moricke A, Zimmermann M et al (2010) Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 24(2):265–284

    Article  PubMed  CAS  Google Scholar 

  • Morland BJ, Shaw PJ (1996) Induction toxicity of a modified Memorial Sloan-Kettering-New York II Protocol in children with relapsed acute lymphoblastic leukemia: a single institution study. Med Pediatr Oncol 27(3):139–144

    Article  PubMed  CAS  Google Scholar 

  • Moussalem M, Esperou Bourdeau H et al (1995) Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission: factors predictive of survival, relapse and graft-versus-host disease. Bone Marrow Transplant 15(6):943–947

    PubMed  CAS  Google Scholar 

  • Mullighan CG, Goorha S et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Su X et al (2009a) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5): 470–480

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Zhang J et al (2009b) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 160:9414–9418

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Collins-Underwood JR et al (2009c) Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 41(11):1243–1246

    Article  PubMed  CAS  Google Scholar 

  • Nachman J, Palmer NF et al (1990) Open-wedge testicular biopsy in childhood acute lymphoblastic leukemia after two years of maintenance therapy: diagnostic accuracy and influence on outcome–a report from Children’s Cancer Study Group. Blood 75(5):1051–1055

    PubMed  CAS  Google Scholar 

  • Nachman JB, Sather HN et al (1998) Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med 338(23):1663–1671

    Article  PubMed  CAS  Google Scholar 

  • Nachman JB, Heerema NA et al (2007) Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110(4):1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Nachman JB, La MK et al (2009) Young adults with acute lymphoblastic leukemia have an excellent outcome with chemotherapy alone and benefit from intensive postinduction treatment: a report from the children’s oncology group. J Clin Oncol 27(31):5189–5194

    Article  PubMed  CAS  Google Scholar 

  • Neale GA, Pui CH et al (1994) Molecular evidence for minimal residual bone marrow disease in children with “isolated” extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia 8(5):768–775

    PubMed  CAS  Google Scholar 

  • Nguyen K, Devidas M et al (2008) Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia 22(12): 2142–2150

    Article  PubMed  CAS  Google Scholar 

  • Ortega JA, Nesbit ME Jr et al (1977) L-Asparaginase, vincristine, and prednisone for induction of first remission in acute lymphocytic leukemia. Cancer Res 37(2):535–540

    PubMed  CAS  Google Scholar 

  • Oudot C, Auclerc MF et al (2008) Prognostic factors for leukemic induction failure in children with acute lymphoblastic leukemia and outcome after salvage therapy: the FRALLE 93 study. J Clin Oncol 26(9):1496–1503

    Article  PubMed  CAS  Google Scholar 

  • Panzer-Grumayer ER, Schneider M et al (2000) Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 95(3):790–794

    PubMed  CAS  Google Scholar 

  • Piantadosi S (2005) Clinical trials: a metholologic perspective. Wiley, New York

    Book  Google Scholar 

  • Pieters R, Schrappe M et al (2007) A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370(9583):240–250

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D (1971) Five-year follow-up of “total therapy” of childhood lymphocytic leukemia. JAMA 216:648–652

    Article  PubMed  CAS  Google Scholar 

  • Pritchard-Jones K, Dixon-Woods M et al (2008) Improving recruitment to clinical trials for cancer in childhood. Lancet Oncol 9(4):392–399

    Article  PubMed  Google Scholar 

  • Pui CH, Howard SC (2008) Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 9(3):257–268

    Article  PubMed  Google Scholar 

  • Pui CH, Bowman WP et al (1988) Cyclic combination chemotherapy for acute lymphoblastic leukemia recurring after elective cessation of therapy. Med Pediatr Oncol 16(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Behm FG et al (1990) Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 75(1): 174–179

    PubMed  CAS  Google Scholar 

  • Pui CH, Boyett JM et al (1999) Sex differences in prognosis for children with acute lymphoblastic leukemia. J Clin Oncol 17(3):818–824

    PubMed  CAS  Google Scholar 

  • Pui CH, Boyett JM et al (2000) Long-term results of TOTAL THERAPY STUDIES 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude Children’s Research Hospital. Leukemia 14(12):2286–2294

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Gaynon PS et al (2002) Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359(9321): 1909–1915

    Article  PubMed  Google Scholar 

  • Pui CH, Chessells JM et al (2003) Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 17(4):700–706

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Robison LL et al (2008) Acute lymphoblastic leukaemia. Lancet 371(9617):1030–1043

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Campana D et al (2009) Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 360(26):2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Pei D et al (2010) Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 24(2):371–382

    Article  PubMed  CAS  Google Scholar 

  • Pulte D, Gondos A et al (2008) Trends in 5- and 10-year survival after diagnosis with childhood hematologic malignancies in the United States, 1990–2004. J Natl Cancer Inst 100(18): 1301–1309

    Article  PubMed  Google Scholar 

  • Pulte D, Gondos A et al (2009) Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood 113(7):1408–1411

    Article  PubMed  CAS  Google Scholar 

  • Putter H, Fiocco M et al (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26(11): 2389–2430

    Article  PubMed  CAS  Google Scholar 

  • Putti MC, Rondelli R et al (1998) Expression of myeloid markers lacks prognostic impact in children treated for acute lymphoblastic leukemia: Italian experience in AIEOP-ALL 88-91 studies. Blood 92(3):795–801

    PubMed  CAS  Google Scholar 

  • Raetz EA, Borowitz MJ et al (2008a) Reinduction platform for children with first marrow relapse of acute lymphoblastic Leukemia: A Children’s Oncology Group Study[corrected]. J Clin Oncol 26(24):3971–3978

    Article  PubMed  CAS  Google Scholar 

  • Raetz EA, Cairo MS et al (2008b) Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol 26(22): 3756–3762

    Article  PubMed  CAS  Google Scholar 

  • Ramakers-van Woerden NL, Pieters R et al (2000) TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood 96(3):1094–1099

    PubMed  CAS  Google Scholar 

  • Reiter A, Schrappe M et al (1994) Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 84(9):3122–3133

    PubMed  CAS  Google Scholar 

  • Ribeiro RC, Rivera GK et al (1995) An intensive re-treatment protocol for children with an isolated CNS relapse of acute lymphoblastic leukemia. J Clin Oncol 13(2):333–338

    PubMed  CAS  Google Scholar 

  • Ribera JM, Ortega JJ et al (2007) Comparison of intensive chemotherapy, allogeneic, or autologous stem-cell transplantation as postremission treatment for children with very high risk acute lymphoblastic leukemia: PETHEMA ALL-93 Trial. J Clin Oncol 25(1):16–24

    Article  PubMed  CAS  Google Scholar 

  • Ribera JM, Oriol A et al (2008) Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Espanol de Tratamiento en Hematologia pediatric-based protocol ALL-96. J Clin Oncol 26(11):1843–1849

    Article  PubMed  CAS  Google Scholar 

  • Richards S, Gray R et al (1996) Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukemia: Overview of 42 trials involving 12000 randomized children. Childhood ALL Collaborative Group. Lancet 347: 1783–1788

    Article  Google Scholar 

  • Riehm H, Gadner H et al (1977) The west-berlin therapy study of acute lymphoblastic leukemia in childhood–report after 6 years (author’s transl). Klin Pädiatr 189(8):89–102

    PubMed  CAS  Google Scholar 

  • Riehm H, Gadner H et al (1980) The Berlin childhood acute lymphoblastic leukemia therapy study, 1970–1976. Am J Pediatr Hematol/Oncol 2:299–306

    Google Scholar 

  • Riehm H, Gadner H et al (1990) Results and significance of six randomized trials in four consecutive ALL-BFM studies. Haematol Blood Transfus 33:439–450

    PubMed  CAS  Google Scholar 

  • Ries LA, Smith MA et al (1999). Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. NCIS Program. Bethesda, MD. NIH Pub. No 99–4649

    Google Scholar 

  • Ritchey AK, Pollock BH et al (1999) Improved survival of children with isolated CNS relapse of acute lymphoblastic leukemia: a pediatric oncology group study. J Clin Oncol 17(12):3745–3752

    PubMed  CAS  Google Scholar 

  • Rivera GK, Pinkel D et al (1993) Treatment of acute lymphoblastic leukemia. 30 years’ experience at St. Jude Children’s Research Hospital. N Engl J Med 329(18):1289–1295

    Article  PubMed  CAS  Google Scholar 

  • Rivera GK, Zhou Y et al (2005) Bone marrow recurrence after initial intensive treatment for childhood acute lymphoblastic leukemia. Cancer 103(2):368–376

    Article  PubMed  Google Scholar 

  • Roberts WM, Estrov Z et al (1997) Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med 336(5):317–323

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Zhou X et al (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102(8):2951–2959

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Bradburn M et al (2005a) Early response to induction is predictive of survival in childhood Philadelphia chromosome positive acute lymphoblastic leukaemia: results of the Medical Research Council ALL 97 trial. Br J Haematol 129(1):35–44

    Article  PubMed  Google Scholar 

  • Roy A, Cargill A et al (2005b) Outcome after first relapse in childhood acute lymphoblastic leukaemia – lessons from the United Kingdom R2 trial. Br J Haematol 130(1):67–75

    Article  PubMed  Google Scholar 

  • Rubnitz JE, Link MP et al (1994) Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 84(2):570–573

    PubMed  CAS  Google Scholar 

  • Rubnitz JE, Shuster JJ et al (1997) Case-control study suggests a favorable impact of TEL rearrangement in patients with B-lineage acute lymphoblastic leukemia treated with antimetabolite-based therapy: a Pediatric Oncology Group study. Blood 89(4):1143–1146

    PubMed  CAS  Google Scholar 

  • Rubnitz JE, Behm FG et al (1999) Low frequency of TEL-AML1 in relapsed acute lymphoblastic leukemia supports a favorable prognosis for this genetic subgroup. Leukemia 13(1):19–21

    Article  PubMed  CAS  Google Scholar 

  • Rubnitz JE, Wichlan D et al (2008) Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol 26(13):2186–2191

    Article  PubMed  Google Scholar 

  • Russell LJ, Capasso M et al (2009) Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 114(13):2688–2698

    Article  PubMed  CAS  Google Scholar 

  • Sadowitz PD, Smith SD et al (1993) Treatment of late bone marrow relapse in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 81(3): 602–609

    PubMed  CAS  Google Scholar 

  • Sallan SE, Cammita BM et al (1978) Intermittent combination chemotherapy with adriamycin for childhood acute lymphoblastic leukemia: clinical results. Blood 51(3):425–433

    PubMed  CAS  Google Scholar 

  • Sallan SE, Hitchcock-Bryan S et al (1983) Influence of intensive asparaginase in the treatment of childhood non-T-cell acute lymphoblastic leukemia. Cancer Res 43(11):5601–5607

    PubMed  CAS  Google Scholar 

  • Salzer WL, Devidas M et al (2010) Long-term results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984–2001: a report from the children’s oncology group. Leukemia 24(2):355–370

    Article  PubMed  CAS  Google Scholar 

  • Sather HN (1986) Age at diagnosis in childhood acute lymphoblastic leukemia. Med Pediatr Oncol 14(3):166–172

    Article  PubMed  CAS  Google Scholar 

  • Schmiegelow K, Nyvold C et al (2001) Post-induction residual leukemia in childhood acute lymphoblastic leukemia quantified by PCR correlates with in vitro prednisolone resistance. Leukemia 15(7):1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld DA, Hui Z et al (2009) Bayesian design using adult data to augment pediatric trials. Clin Trials 6(4):297–304

    Article  PubMed  Google Scholar 

  • Schrappe M (2004) Evolution of BFM trials for childhood ALL. Ann Hematol 83(Suppl 1):S121–123

    PubMed  Google Scholar 

  • Schrappe M, Camitta B et al (2000a) Long-term results of large prospective trials in childhood acute lymphoblastic leukemia. Leukemia 14(12):2193–2194

    Article  PubMed  CAS  Google Scholar 

  • Schrappe M, Reiter A et al (2000b) Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 95(11):3310–3322

    PubMed  CAS  Google Scholar 

  • Schrappe M, Zimmermann M et al (2008) Dexamethasone in induction can eliminate one third of all relapses in childhood acute lymphoblastic leukemia (ALL): results of an international randomized trial in 3655 patients (Trial AEIOP-BFM ALL 2000). Blood (ASH Annu Meet Abstr) 112:7

    Google Scholar 

  • Schrauder A, von Stackelberg A et al (2008) Allogeneic hematopoietic SCT in children with ALL: current concepts of ongoing prospective SCT trials. Bone Marrow Transplant 41(Suppl 2):S71–74

    Article  PubMed  Google Scholar 

  • Schroeder H, Garwicz S et al (1995) Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol 25(5):372–378

    Article  PubMed  CAS  Google Scholar 

  • Schultz KR, Pullen DJ et al (2007) Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 109(3):926–935

    Article  PubMed  CAS  Google Scholar 

  • Schultz KR, Bowman WP et al (2009) Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol 27(31):5175–5181

    Article  PubMed  CAS  Google Scholar 

  • Seeger K, Adams HP et al (1998) TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood 91(5): 1716–1722

    PubMed  CAS  Google Scholar 

  • Seibel NL, Steinherz PG et al (2008) Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 111(5): 2548–2555

    Article  PubMed  CAS  Google Scholar 

  • Shah A, Stiller CA et al (2008) Childhood leukaemia: long-term excess mortality and the proportion “cured”. Br J Cancer 99(1):219–223

    Article  PubMed  CAS  Google Scholar 

  • Shuster JJ, Wacker P et al (1998) Prognostic significance of sex in childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol 16(8): 2854–2863

    PubMed  CAS  Google Scholar 

  • Silverman LB, Gelber RD et al (1999) Induction failure in acute lymphoblastic leukemia of childhood. Cancer 85(6): 1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Silverman LB, Declerck L et al (2000) Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia 14(12):2247–2256

    Article  PubMed  CAS  Google Scholar 

  • Silverman LB, Gelber RD et al (2001) Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 97(5):1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Silverman LB, Stevenson KE et al (2010) Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia 24(2):320–334

    Article  PubMed  CAS  Google Scholar 

  • Smith M, Arthur D et al (1996) Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 14(1):18–24

    PubMed  CAS  Google Scholar 

  • Sramkova L, Muzikova K et al (2007) Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 48(1):93–100

    Article  PubMed  Google Scholar 

  • Steinherz PG, Gaynon PS et al (1996) Cytoreduction and prognosis in acute lymphoblastic leukemia – the importance of early marrow response: report from the Childrens Cancer Group. J Clin Oncol 14(2):389–398

    PubMed  CAS  Google Scholar 

  • Steward CG, Goulden NJ et al (1994) A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 83(5):1355–1362

    PubMed  CAS  Google Scholar 

  • Stock W, La M et al (2008) What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood 112(5):1646–1654

    Article  PubMed  CAS  Google Scholar 

  • Strefford JC, van Delft FW et al (2006) Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci USA 103(21):8167–8172

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe MJ, Shuster JJ et al (2005) High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI standard-risk B-precursor acute lymphoblastic leukemia: a Children’s Oncology Group (COG) initiative. Leukemia 19(5):734–740

    Article  PubMed  CAS  Google Scholar 

  • Szczepanski T (2007) Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia 21(4): 622–626

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Horibe K et al (1998) Prognostic significance of TEL/AML1 fusion transcript in childhood B-precursor acute lymphoblastic leukemia. J Pediatr Hematol Oncol 20(3): 190–195

    Article  PubMed  CAS  Google Scholar 

  • Thall PF (2008) A review of phase 2–3 clinical trial designs. Lifetime Data Anal 14(1):37–53

    Article  PubMed  Google Scholar 

  • Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol 6(12):913–924

    Article  PubMed  CAS  Google Scholar 

  • Trueworthy R, Shuster J et al (1992) Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol 10(4):606–613

    PubMed  CAS  Google Scholar 

  • Tsurusawa M, Yumura-Yagi K et al (2007) Survival outcome after the first central nervous system relapse in children with acute lymphoblastic leukemia: a retrospective analysis of 79 patients in a joint program involving the experience of three Japanese study groups. Int J Hematol 85(1):36–40

    Article  PubMed  Google Scholar 

  • Tubergen DG, Gilchrist GS et al (1993) Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: a Childrens Cancer Group phase III trial. J Clin Oncol 11(3):527–537

    PubMed  CAS  Google Scholar 

  • Uckun FM, Gaynon PS et al (1997a) Clinical features and treatment outcome of childhood T-lineage acute lymphoblastic leukemia according to the apparent maturational stage of T-lineage leukemic blasts: a Children’s Cancer Group study. J Clin Oncol 15(6):2214–2221

    PubMed  CAS  Google Scholar 

  • Uckun FM, Sather HN et al (1997b) Clinical features and treatment outcome of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 90(1):28–35

    PubMed  CAS  Google Scholar 

  • Uckun FM, Gaynon PS et al (1999) Paucity of leukemic progenitor cells in the bone marrow of pediatric B-lineage acute lymphoblastic leukemia patients with an isolated extramedullary first relapse. Clin Cancer Res 5(9):2415–2420

    PubMed  CAS  Google Scholar 

  • Uckun FM, Stork L et al (2000) Residual bone marrow leukemic progenitor cell burden after induction chemotherapy in pediatric patients with acute lymphoblastic leukemia. Clin Cancer Res 6(8):3123–3130

    PubMed  CAS  Google Scholar 

  • Uderzo C, Grazia Zurlo M et al (1990) Treatment of isolated testicular relapse in childhood acute lymphoblastic leukemia: an Italian multicenter study. Associazione Italiana Ematologia ed Oncologia Pediatrica. J Clin Oncol 8(4): 672–677

    PubMed  CAS  Google Scholar 

  • Uderzo C, Rondelli R et al (1995) High-dose vincristine, fractionated total-body irradiation and cyclophosphamide as conditioning regimen in allogeneic and autologous bone marrow transplantation for childhood acute lymphoblastic leukaemia in second remission: a 7-year Italian multicentre study. Br J Haematol 89(4):790–797

    Article  PubMed  CAS  Google Scholar 

  • Valsecchi MG, Masera G (1996) A new challenge in clinical research in childhood ALL: the prospective meta-analysis strategy for intergroup collaboration. Ann Oncol 7(10): 1005–1008

    Article  PubMed  CAS  Google Scholar 

  • van Dongen JJ, Seriu T et al (1998) Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352(9142):1731–1738

    Article  PubMed  Google Scholar 

  • Veerman AJ, Kamps WA et al (2009) Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997–2004). Lancet Oncol 10(10):957–966

    Article  PubMed  CAS  Google Scholar 

  • von Stackelberg A, Hartmann R et al (2008) High-dose compared with intermediate-dose methotrexate in children with a first relapse of acute lymphoblastic leukemia. Blood 111(5):2573–2580

    Article  CAS  Google Scholar 

  • Vora A, Frost L et al (1998) Late relapsing childhood lymphoblastic leukemia. Blood 92(7):2334–2337

    PubMed  CAS  Google Scholar 

  • Weyman C, Graham-Pole J et al (1993) Use of cytosine arabinoside and total body irradiation as conditioning for allogeneic marrow transplantation in patients with acute lymphoblastic leukemia: a multicenter survey. Bone Marrow Transplant 11(1):43–50

    PubMed  CAS  Google Scholar 

  • Wheeler K, Richards S et al (1998) Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol 101(1):94–103

    Article  PubMed  CAS  Google Scholar 

  • Whitehead VM, Vuchich MJ et al (1992) Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 80(5): 1316–1323

    PubMed  CAS  Google Scholar 

  • Whitlock JA (2006) Down syndrome and acute lymphoblastic leukaemia. Br J Haematol 135(5):595–602

    Article  PubMed  Google Scholar 

  • Wiersma SR, Ortega J et al (1991) Clinical importance of myeloid-antigen expression in acute lymphoblastic leukemia of childhood. N Engl J Med 324(12):800–808

    Article  PubMed  CAS  Google Scholar 

  • Winick NJ, Smith SD et al (1993) Treatment of CNS relapse in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol 11(2):271–278

    PubMed  CAS  Google Scholar 

  • Wofford MM, Smith SD et al (1992) Treatment of occult or late overt testicular relapse in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol 10(4):624–630

    PubMed  CAS  Google Scholar 

  • Yeoh EJ, Ross ME et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Hunger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Hunger, S.P., Conter, V., Raetz, E.A., Valsecchi, M.G., Henze, G. (2011). Classification and Treatment of Acute Lymphoblastic Leukemia. In: Reaman, G., Smith, F. (eds) Childhood Leukemia. Pediatric Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13781-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13781-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13780-8

  • Online ISBN: 978-3-642-13781-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics