Skip to main content
  • 1987 Accesses

Abstract

Even though MOSFET has been invented much earlier [1] than bipolar transistor [2], the commercial mass-volume foundry implementation of bipolar technology hasbeen introduced more than a decade prior to CMOS. Therefore, some of the classical analog circuit topologies e.g. Gilbert cell mixer or current-mode logic (CML), originally developed for bipolar transistors, were directly adopted in CMOS. However, CMOS technology has differing characteristics that have to be considered during circuit design. Some properties can be utilized to gain advantages. For example, true CMOS logic circuits consume much less current than their CML counterparts. On the other hand, MOS transistors unlike bipolar suffer from high 1/f noise and may hinder straightforward implementation of the Gilbert cell mixer topology for the direct down-conversion architecture. Several circuit techniques have been developed in CMOS in order to overcome this problem [3], [4]. An additional common approach, adopted from III/V technologies, is to use passive resistive mixers [5]. This technique is well suited for MOSFETs, since these may act as passive voltagecontrolled switches, but it is not applicable for bipolar transistors since these act as current-controlled switches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Lilienfeld, Device for controlling electric current, United States Patent number 1900018, 1928.

    Google Scholar 

  2. J. Bardeen andW. H. Brattain, “The Transistor, A Semiconductor Triode”, Physical Review, vol. 74, pp. 230--231, July 1948.

    Google Scholar 

  3. Darabi and J. Chiu, “A Noise Cancellation Technique in Active RF-CMOS Mixers”, IEEE Journal of Solid-State Circuits, vol. 40, pp. 2628--2632, Dec 2005.

    Google Scholar 

  4. Koh, D. Schmitt-Landsiedel, R. Thewes, and R. Brederlow, “A Complementary Switched MOSFET Architecture for the 1/f Noise Reduction in Linear Analog CMOS ICs”, IEEE Journal of Solid-State Circuits, vol. 42, pp. 1352--1361, June 2007.

    Google Scholar 

  5. Maas, “A GaAs MESFET Mixer with Very Low Intermodulation”, IEEE Transactions on Microwave Theory and Techniques, vol. 35, pp. 425--429, April 1987.

    Google Scholar 

  6. Nguyen, “CMOS low-noise amplifier design optimization techniques”, IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 1433--1442, May 2004.

    Google Scholar 

  7. T. Nicolson and S. P. Voinigescu, “Methodology for Simultaneous Noise and Impedance Matching in W-Band LNAs”, in IEEE Compound Semiconductor IC Symposium (CSICS) Digest, pp. 279--282, San Antonio, USA, November 2006.

    Google Scholar 

  8. Issakov, M. Tiebout, Y. Cao, A. Thiede, and W. Simbürger, “A low power 24 GHz LNA in 0.13 ?m CMOS”, in IEEE Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), pp. 1--10, Tel Aviv, Israel, May 2008.

    Google Scholar 

  9. Issakov, H. Knapp, M. Wojnowski, A. Thiede, W. Simbürger, G. Haider, and L. Maurer, “ESD-protected 24 GHz LNA for Radar Applications in SiGe:C Technology”, in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 1--4, San Diego, USA, January 2009.

    Google Scholar 

  10. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier”, IEEE Journal of Solid-State Circuits, vol. 32, pp. 745--759, May 1997.

    Google Scholar 

  11. J. Deen, C.-H. Chen, S. Asgaran, G. A. Rezvani, J. Tao, and Y. Kiyota, “High-Frequency Noise of Modern MOSFETs: Compact Modeling and Measurement Issues”, IEEE Transactions on Electron Devices, vol. 53, pp. 2062--2081, September 2006.

    Google Scholar 

  12. Dambrine, H. Happy, F. Danneville, and A. Cappy, “A New Method for On Wafer Noise Measurement”, IEEE Transactions on Microwave Theory and Techniques, vol. 41, pp. 375- -381, March 1993.

    Google Scholar 

  13. O. Dickson, K. H. K. Yau, T. Chalvatzis, A. M. Mangan, E. Laskin, R. Beerkens, P. Westergaard, M. Tazlauanu, M.-T. Yang, and S. P. Voinigescu, “The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks”, IEEE Journal of Solid-State Circuits, vol. 41, pp. 1830--1845, August 2006.

    Google Scholar 

  14. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press, 2004.

    Google Scholar 

  15. Zoschg, W. Wilhelm, T. F. Meister, H. Knapp, H.-D.Wohlmuth, K. Aufinger, M. Wurzer, J. Bock, H. Schafer, and A. Scholtz, “2 dB noise figure, 10.5 GHz LNA using SiGe bipolar technology”, Electronics Letters, vol. 35, pp. 2195--2196, December 1999.

    Google Scholar 

  16. van der Heijden, H. Veenstra, D. Hartskeerl, M. Notten, and D. van Goor, “Low Noise Amplifier with integrated balun for 24 GHz car radar”, in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 78--81, Orlando, USA, January 2008.

    Google Scholar 

  17. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 1998.

    Google Scholar 

  18. Welch and et al., “The Effects of Feedback Capacitance on Thermally Shunted Heterojunction Bipolar Transistor’s Linearity”, in International Conference on Compound Semiconductor Manufacturing Technology (Mantec), Vancouver, Canada, May 1999, available online at http://www.csmantech.org/Digests/1999/PDF/41.pdf.

  19. Niu, “Noise in SiGe HBT RF Technology: Physics, Modeling, and Circuit Implications”, Proc. of the IEEE, vol. 93, pp. 1583--1597, September 2005.

    Google Scholar 

  20. P. Voinigescu,M. C.Maliepaard, J. L. Showell, G. E. Babcock, D.Marchesan, M. Schroter, P. Schvan, and D. L. Harame, “A Scalable High-Frequency Noise Model for Bipolar Transistors with Application to Optimal Transistor Sizing for Low-Noise Amplifier Design”, IEEE Journal of Solid-State Circuits, vol. 32, pp. 1430--1439, September 1997.

    Google Scholar 

  21. Hyatt, J. Harris, A. Alanzo, and P. Bellew, “TLP measurements for verification of ESD protection device response”, in Electrical Overstress/ Electrostatic Discharge (EOSESD) Symposium, pp. 111--120, Anaheim, USA, September 2000.

    Google Scholar 

  22. Yu and M. F. Chang, “CMOS K-band LNAs design counting both interconnect transmission line and RF pad parasitics”, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 101--104, Fort Worth, USA, June 2004.

    Google Scholar 

  23. A. Floyd, L. Shi, Y. Taur, I. Lagnado, and K. K. O, “A 23.8-GHz SOI CMOS Tuned Amplifier”, IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 2193-- 2196, September 2002.

    Google Scholar 

  24. Pruvost, L. Moquillon, E. Imbs, M. Marchetti, and P. Garcia, “Low Noise Low Cost Rx Solutions for Pulsed 24 GHz Automotive Radar Sensors”, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 387--390, Honolulu, Hawaii, June 2007.

    Google Scholar 

  25. Gilbert, “A precise four-quadrant multiplier with subnanosecond response”, IEEE Journal of Solid-State Circuits, vol. 3, pp. 365--373, December 1968.

    Google Scholar 

  26. A. Maas, Nonlinear Microwave and RF Circuits, Artech House, 2003.

    Google Scholar 

  27. Hossain, B. M. Frank, and Y. M. Antar, “Performance of a low voltage highly linear 24 GHz down conversion mixer in 0.18 ?m CMOS”, in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, USA, January 2006.

    Google Scholar 

  28. Shiramizu, T.Masuda, T. Nakamura, and K.Washio, “24-GHz 1-V pseudo-stacked mixer with gain-boosting technique”, in Proc. of European Solid-State Circuits Conference (ESSCIRC), pp. 102--105, Edinburgh, UK, September 2008.

    Google Scholar 

  29. Park, C.-H. Lee, B.-S. Kim, and J. Laskar, “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers”, IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 4372--4380, December 2006.

    Google Scholar 

  30. Gresham and A. Jenkins, “A low-noise broadband SiGe mixer for 24 GHz ultra-wideband automotive applications”, in Proc. Radio and Wireless Symposium (RAWCON), pp. 361-- 364, Boston, USA, August 2003.

    Google Scholar 

  31. M. Kodkani and L. E. Larson, “A 24-GHz CMOS Passive Subharmonic Mixer/Downconverter for Zero-IF Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 56, pp. 1247--1256, May 2008.

    Google Scholar 

  32. Chang and J. Lin, “1-11 GHz Ultra-Wideband Resistive Ring Mixer in 0.18 ?m CMOS Technology”, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, San Francisco, USA, June 2006.

    Google Scholar 

  33. Kim, V. Aparin, and L. E. Larson, “A Resistively Degenerated Wide-Band Passive Mixer with Low Noise Figure and +60 dBm IIP2 in 0.18 ?m CMOS”, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 185--188, Atlanta, USA, June 2008.

    Google Scholar 

  34. Issakov, H. Knapp, M. Tiebout, A. Thiede, W. Simbürger, and L. Maurer, “Comparison of 24 GHz Low-Noise Mixers in CMOS and SiGe:C Technologies”, in European Microwave Integrated Circuits Conference (EuMIC), pp. 184--187, Rome, Italy, October 2009.

    Google Scholar 

  35. Issakov, A. Thiede, L. Verweyen, and L. Maurer, “Wideband Resistive Ring Mixer for Automotive and Industrial Applications in 0.13 ?m CMOS”, in German Microwave Conference (GeMiC), pp. 1--4, Munich, Germany, March 2009.

    Google Scholar 

  36. Issakov, H. Knapp, A. Thiede, W. Simbürger, and L. Maurer, “A 22?38 GHz Integrated Passive Mixer in SiGe:C Technology”, in submitted to IEEE MTT-S International Microwave (IMS) Symposium, Anaheim, USA, June 2010.

    Google Scholar 

  37. P. Voinigescu, T. O. Dickson, M. Gordon, C. Lee, T. Yao, A. Mangan, K. Tang, and K. Yau, Si- based Semiconductor Components for Radio-Frequency Integrated Circuits (RF IC), chapter RF and Millimeter-Wave IC Design in the Nano-(Bi)CMOS Era, pp. 33--62, Transworld Research Network, 2006.

    Google Scholar 

  38. Zhang, H. Xu, H.-T.Wu, and K.-K. O, “W-Band Active Down-Conversion Mixer in Bulk CMOS”, IEEE Microwave and Wireless Components Letters, vol. 19, pp. 98--100, February 2009.

    Google Scholar 

  39. Ellinger, Radio Frequency Integrated Circuits and Technologies, chapter 4, Springer, 2007.

    Google Scholar 

  40. Yue and S.S. Wong, “On-chip spiral inductors with patterned ground shields for Sibased RF ICs”, IEEE Journal of Solid-State Circuits, vol. 33, pp. 743--752, May 1998.

    Google Scholar 

  41. Rogers and C. Plett, Radio Frequency Integrated Circuit Design, chapter 5, Artech House, 2003.

    Google Scholar 

  42. Ellinger, “26-34 GHz CMOS mixer”, Electronics Letters, vol. 40, pp. 1417--1419, October 2004.

    Google Scholar 

  43. Lin, P.-S.Wu, H.-Y. Chang, and H.Wang, “A 9-50-GHz Gilbert-cell down-conversion mixer in 0.13-um CMOS technology”, IEEE Microwave and Wireless Components Letters, vol. 16, 2006.

    Google Scholar 

  44. A. M. Saleh, Theory of resistive mixers, MIT Press, 1971.

    Google Scholar 

  45. J. Kelly, “Fundamental Limits on Conversion Loss of Double Sideband Resistive Mixers”, IEEE Transactions on Microwave Theory and Techniques, vol. 25, pp. 867--869, November 1977.

    Google Scholar 

  46. W. Lin and W. H. Ku, “Device considerations and modeling for the design of an InPbasedMODFET millimeter-wave resistive mixer with superior conversion efficiency”, IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 1951--1959, August 2001.

    Google Scholar 

  47. Ellinger, “26.5-30-GHz Resistive Mixer in 90-nm VLSI SOI CMOS Technology With High Linearity for WLAN”, IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 2559--2565, August 2005.

    Google Scholar 

  48. Issakov, A. Thiede, L. Verweyen, and M. Tiebout, “0.5-25 GHz inductorless single-ended resistive mixer in 0.13 ?m CMOS”, Electronics Letters, vol. 45, pp. 108--109, January 2009.

    Google Scholar 

  49. Sankaran and K. K. O, “Schottky diode with cutoff frequency of 400 GHz fabricated in 0.18 ?m CMOS”, Electronics Letters, vol. 41, pp. 506--508, April 2005.

    Google Scholar 

  50. Roselli, F. Alimenti, M. Comez, V. Palazzari, F. Placentino, N. Porzi, and A. Scarponi, “A cost driven 24 GHz Doppler radar sensor development for automotive applications”, in European Radar Conference (EuRAD), pp. 335--338, Paris, France, October 2005.

    Google Scholar 

  51. H. Lin and Y. J. Chan, “2.4 GHz single balanced diode mixer fabricated on Al2O3 substrate”, in Proc. Asia-Pacific Microwave Conference (APMC), pp. 218--221, Singapore, November 1999.

    Google Scholar 

  52. Verweyen, H. Massler, M. Neumann, U. Schaper, and W. H. Haydl, “Coplanar integrated mixers for 77-GHz automotive applications”, IEEE Microwave and Guided Wave Letters, vol. 8, pp. 38--40, January 1998.

    Google Scholar 

  53. J. Bahl, Lumped elements for RF and microwave circuits, Artech House, 2003.

    Google Scholar 

  54. Wu, C.-S. Lin, T.-W. Huang, H. Wang, Y.-C. Wang, and C.-S. Wu, “A millimeterwave ultra-compact broadband diode mixer using modified Marchand balun”, in Gallium Arsenide and Other Semiconductor Application Symposium (EGAAS), pp. 349--352, Paris, France, October 2005.

    Google Scholar 

  55. Guan and A. Hajimiri, “A 24-GHz CMOS front-end”, IEEE Journal of Solid-State Circuits, vol. 39, pp. 368--373, February 2004.

    Google Scholar 

  56. Geffroy, G. De Astis, and E. Bergeault, “RF mixers using standard digital CMOS 0.35 ?m process”, in IEEE MTT-S International Microwave Symposium (IMS) Digest, pp. 83--86, Phoenix, USA, May 2001.

    Google Scholar 

  57. Voltti, T. Koivi, and E. Tiiliharju, “Comparison of active and passive mixers”, in Proc. European Conference on Circuit Theory and Design (ECCTD), pp. 890--893, Sevilla, Spain, August 2007.

    Google Scholar 

  58. Issakov, D. ? Siprak, M. Tiebout, A. Thiede, W. Simbürger, and L. Maurer, “Comparison of 24GHz Receiver Front-Ends using Active and Passive Mixers in CMOS”, IET Circuits, Devices & Systems, vol. 3, pp. 340--349, December 2009.

    Google Scholar 

  59. Tsividis, Operation and Modeling of the MOS Transistor, McGraw-Hill, 2nd edition, 1999.

    Google Scholar 

  60. Dehlink, H.-D.Wohlmuth, K. Aufinger, T. F. Meister, J. Böck, and A. L. Scholz, “A lownoise amplifier at 77 GHz in SiGe:C bipolar technology”, in IEEE Compound Semiconductor IC Symposium (CSICS) Digest, pp. 287--290, Palm Springs, USA, November 2005.

    Google Scholar 

  61. Chang, RF and Microwave Wireless Systems, Wiley, 2000.

    Google Scholar 

  62. Sansen, “Distortion in elementary transistor circuits”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, pp. 315--325, March 1999.

    Google Scholar 

  63. J. Baker, H.W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, IEEE Press, 1998.

    Google Scholar 

  64. Chen, H.-H. Hsieh, and L.-H. Hsieh, “A 24-GHz Receiver Frontend With an LO Signal Generator in 0.18-?m CMOS”, IEEE Transactions on Microwave Theory and Techniques, vol. 56, pp. 1043--1051, May 2008.

    Google Scholar 

  65. Törmänen and H. Sjöland, “Two 24 GHz Receiver Front-ends in 130 nm CMOS using SOP Technology”, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 559--562, Boston, USA, June 2009.

    Google Scholar 

  66. Yu and G.M. Rebeiz, “A 24 GHz 4-channel phased-array receiver in 0.13 ?m CMOS”, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 361--364, Atlanta, USA, June 2008.

    Google Scholar 

  67. Veenstra, E. van der Heijden, M. Notten, and G. Dolmans, “A SiGe-BiCMOS UWB Receiver for 24GHz Short-Range Automotive Radar Applications”, in IEEE MTT-S International Microwave Symposium (IMS) Digest, pp. 1791--1794, Honolulu, Hawaii, June 2007.

    Google Scholar 

  68. Kim, K. V. Buer, E. Imbs, and G. M. Rebeiz, “An 18-20 GHz Subharmonic Satellite Down-Converter in 0.18 ?m SiGe Technology”, in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 1--4, San Diego, USA, January 2009.

    Google Scholar 

  69. Issakov, K. L. R. Mertens, M. Tiebout, A. Thiede, and W. Simbürger, “Compact Quadrature Receiver for 24 GHz Radar Applications in 0.13 ?m CMOS”, Electronics Letters, vol. 46, no.1, pp. 315--325, January 2010.

    Google Scholar 

  70. Issakov, H. Knapp, F. Magrini, A. Thiede, W. Simbürger, and L. Maurer, “Low-Noise ESD-protected 24 GHz Receiver for Radar Applications in SiGe:C Technology”, in Proc. of European Solid-State Circuits Conference (ESSCIRC), pp. 308--311, Athens, Greece, September 2009.

    Google Scholar 

  71. G. M. Notten and H. Veenstra, “60 GHz quadrature signal generation with a single phase VCO and polyphase filter in a 0.25 ?m SiGe BiCMOS technology”, in Proc. Bipolar / BiCMOS Circuits and Technology Meeting (BCTM), pp. 178--181, Monterey, USA, October 2008.

    Google Scholar 

  72. Gilbert, “Fundamental aspects of modern active mixer design”, in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, February 2000. IEEE, Short Course ”Circuits and Devices for RF Wireless Networks”.

    Google Scholar 

  73. Y.-K. Chen, H.-B. Liang, Y. Baeyens, Y.-K. Chen, J. Lin, and Y.-S. Lin, “Wideband Mixed Lumped-Distributed-Element 90? and 180? Power Splitters on Silicon Substrate for Millimeter-Wave Applications”, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 449--452, Atlanta, USA, June 2008.

    Google Scholar 

  74. Bakalski, W. Simbürger, H. Knapp, H.-D. Wohlmuth, and A. L. Scholtz, “Lumped and Distributed Lattice-type LC-Baluns”, in IEEE MTT-S International Microwave Symposium (IMS) Digest, pp. 209--212, Seattle, USA, June 2002.

    Google Scholar 

  75. C. Frye, S. Kapur, and R. C. Melville, “A 2-GHz Quadrature Hybrid Implemented in CMOS Technology”, IEEE Journal of Solid-State Circuits, vol. 38, pp. 550--555, March 2003.

    Google Scholar 

  76. J. Parisi, “A Lumped Element Rat Race Coupler”, Applied Microwave, vol., pp. 8493, September 1989.

    Google Scholar 

  77. Leblebici, ESD Protection and Reliability, Advanced Engineering Course on ”Design for hostile environment: Automotive and Industrial”, mead education edition, 2008.

    Google Scholar 

  78. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, Wiley, 2002.

    Google Scholar 

  79. Cao, T. W. Chen, S. G. Beebe, and R. W. Dutton, “ESD design challenges and strategies in deeply scaled integrated circuits”, in Custom Integrated Circuits Conference (CICC), pp. 681--688, San Jose, USA, September 2009.

    Google Scholar 

  80. Soldner, M. Streibl, U. Hodel, M. Tiebout, H. Gossner, D. Schmitt-Landsiedel, J. H. Chun, C. Ito, and R. W. Dutton, “RF ESD Protection Strategies: Codesign vs. low-C protection”, in Electrical Overstress/ Electrostatic Discharge (EOSESD) Symposium, pp. 33--42, Tucson, USA, September 2005.

    Google Scholar 

  81. Vassilev, S. Thijs, P. L. Segura, P. Leroux, P.Wambacq, G. Groeseneken, M. I. Natarajan, M. Steyaert, and H. E.Maes, “Co-design methodology to provide high ESD protection levels in the advanced RF circuits”, in Electrical Overstress/ Electrostatic Discharge (EOSESD) Symposium, pp. 1--9, Las Vegas, USA, September 2003.

    Google Scholar 

  82. Ker and C.-M. Lee, “ESD Protection Design for Giga-Hz RF CMOS LNA with Novel Impedance-Isolation Technique”, in Electrical Overstress/ Electrostatic Discharge (EOSESD) Symposium, pp. 1--10, Las Vegas, USA, September 2003.

    Google Scholar 

  83. Kleveland, T. J. Maloney, I. Morgan, L. Madden, T. H. Lee, and S. S.Wong, “Distributed ESD protection for high-speed integrated circuits”, IEEE Electron Device Letters, vol. 21, pp. 390--392, August 2000.

    Google Scholar 

  84. Shorb, X. Li, and D. J. Allstot, “A resonant pad for ESD protected narrowband CMOS RF applications”, in Proc. on International Symposium on Circuits and Systems (ISCAS), pp. I--61 -- I--64, Bangkok, Thailand, June 2003.

    Google Scholar 

  85. Galal and B. Razavi, “Broadband ESD protection circuits in CMOS technology”, in IEEE International Solid-State Circuits Conference (ISSCC), pp. 182--486, San Francisco, February 2003. IEEE.

    Google Scholar 

  86. Issakov, D. Johnsson, Y. Cao, M. Tiebout, M. Mayerhofer, W. Simbürger, and L. Maurer, “ESD Concept for High-Frequency Circuits”, in Electrical Overstress/ Electrostatic Discharge (EOSESD) Symposium, pp. 221--227, Tucson, USA, September 2008.

    Google Scholar 

  87. Linten,M. I. Natarajan, S. Thijs, S. Van Huylenbroeck, S. Xiao, G. Carchon, S. Decoutere, M. Sawada, T. Hasebe, and G. Groeseneken, “Implementation of 6 kV ESD Protection for a 17 GHz LNA in 130 nm SiGeC BiCMOS”, in Proc. on International Conference on Semiconductor Electronics (ICSE), pp. A7 -- A12, Kuala Lumpur, Malaysia, July 2006.

    Google Scholar 

  88. Borremans, S. Thijs, P. Wambacq, D. Linten, Y. Rolain, and M. Kuijk, “A 5 kV HBM transformer-based ESD protected 5-6 GHz LNA”, in IEEE Symposium on VLSI Circuits, pp. 100--101, Kyoto, Japan, June 2007.

    Google Scholar 

  89. Cao, V. Issakov, and M. Tiebout, “A 2 kV ESD protected 18 GHz LNA with 4 dB NF in 0.13 ?m CMOS”, in IEEE International Solid-State Circuits Conference (ISSCC), pp. 194--606, San Francisco, February 2008. IEEE.

    Google Scholar 

  90. P. J. Mergens, C. C. Russ, K. G. Verhaege, J. Armer, P. C. Jozwiak, R. P. Mohn, B. Keppens, and C. S. Trinh, “Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies”, IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 532--542, September 2005.

    Google Scholar 

  91. Z. H. Wang, On-Chip ESD Protection for Integrated Circuits: An IC Design Perspective, Kluwer, 2002.

    Google Scholar 

  92. Ille, W. Stadler, T. Pompl, H. Gossner, T. Brodbeck, K. Esmark, P. Riess, D. Alvarez, K. Chatty, and R. Gauthier and A. Bravaix, “Reliability aspects of gate oxide under ESD pulse stress”, in Electrical Overstress/ Electrostatic Discharge (EOSESD) Symposium, pp. 1--10, Anaheim, USA, September 2007.

    Google Scholar 

  93. Gossner, “ESD protection for the deep sub micron regime - a challenge for design methodology”, in Proc. VLSI Design, pp. 809--818, Mumbai, India, January 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Issakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Issakov, V. (2010). Radar Receiver Circuits. In: Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13598-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13598-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13597-2

  • Online ISBN: 978-3-642-13598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics