Skip to main content
  • 1897 Accesses

Abstract

Accurate measurements are essential in high-frequency engineering. Depending on the functionality of the device under test (DUT), different types of measurements are required. Linear characteristics of microwave circuits and devices are usually measured using a vector network analyzer (VNA). The obtained S-parameters are used to describe the main performance characteristics of the networks operating in their linear range. For example, for an LNA the small-signal S-parameters describe its gain, reverse isolation and port matching. Also for instance, the main properties of a directional coupler such as e.g. amplitude and phase imbalance, insertion loss, isolation and port matching can be derived from its S-parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.Martens, High-frequency characterization of electronic packaging, chapter 3.5.3, Springer, 1998.

    Google Scholar 

  2. M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, “An Improved Deembedding Technique for On-Wafer High-Frequency Characterization”, in Proc. Bipolar / BiCMOS Circuits and Technology Meeting (BCTM), pp. 188--191, Minneapolis, USA, September 1991.

    Google Scholar 

  3. L. F. Tiemeijer, R. J. Havens, A. B. M. Jansman, and Y. Bouttement, “Comparison of the ”Pad-Open-Short” and ”Open-Short-Load” deembedding techniques for accurate on-wafer rf characterization of high-quality passives”, IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 723--729, February 2005.

    Google Scholar 

  4. Y. Tretiakov, K. Vaed, W. Woods, S. Venkatadri, and T. Zwick, “A New On-Wafer De-Embedding Technique for On-Chip RF Transmission Line Interconnect Characterization”, in Proc. IEEE 63rd ARFTG Conference, pp. 69--72, Fort Worth, USA, June 2004.

    Google Scholar 

  5. A. Issaoun, Y. Z. Xiong, J. Shi, J. Brinkhoff, and F. Lin, “On the Deembedding Issue of CMOS Multigigahertz Measurements”, IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 1813--1823, September 2007.

    Google Scholar 

  6. J. Song, F. Ling, G. Flynn, W. Blood, and E. Demircan, “A De-embedding Technique for Interconnects”, in Proc. IEEE Elec. Perf. of Electronic Packaging, pp. 129--132, Cambridge, USA, October 2001.

    Google Scholar 

  7. M. B. Steer, S. B. Goldberg, G. Rinne, P. D. Franzon, I. Turlik, and J. S. Kasten, “Introducing the through-line deembedding procedure”, in IEEE MTT-S International Microwave Symposium (IMS) Digest, pp. 1455--1458, Albuquerque, USA, June 1992.

    Google Scholar 

  8. G. F. Glenn and C. A. Hoer, “Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer”, IEEE Transactions on Microwave Theory and Techniques, vol. 27, pp. 987--993, December 1979.

    Google Scholar 

  9. V. Issakov, M. Wojnowski, A. Thiede, and L. Maurer, “Extension of Thru De-embedding Technique for Asymmetrical and Differential Devices”, IET Circuits, Devices & Systems, vol. 3, pp. 91--98, April 2009.

    Google Scholar 

  10. D. E. Bockelman and W. R. Eisenstadt, “Combined Differential and Common-Mode Scattering Parameters: Theory and Simulation”, IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 1530--1539, July 1995.

    Google Scholar 

  11. T. Zwick and U. Pfeiffer, “Pure-mode network analyzer concept for on-wafer measurements of differential circuits at millimeter-wave frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 934--937, March 2005.

    Google Scholar 

  12. C. Seguinot, P. Kennis, J.-F. Legier, F. Huret, E. Paleczny, and L. Hayden, “Multimode TRL - A New Concept inMicrowaveMeasurements: Theory and Experimental Verification”, IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 536--542, May 1998.

    Google Scholar 

  13. D.-H. Han, T. Q. Ruttan, and L. A. Polka, “Differential de-embedding methodology for on-board CPU socket measurements”, in Proc. IEEE 61st ARFTG Conference, pp. 37--43, Philadelphia, USA, June 2003.

    Google Scholar 

  14. V. Issakov, M.Wojnowski, A. Thiede, and R.Weigel, “Considerations on the De-embedding of Differential Devices Using Two-Port Techniques”, in European Microwave Conference (EuMC), pp. 695--698, Rome, Italy, October 2009.

    Google Scholar 

  15. A. G. Chiariello, A. Maffucci, G. Miano, F. Villone, and W. Zamboni, “A Transmission- Line Model for Full-Wave Analysis of Mixed-Mode Propagation”, IEEE Transactions on Advanced Packaging, vol. 31, pp. 275--284, February 2008.

    Google Scholar 

  16. O. Zinke and H. Brunswig, Hochfrequenztechnik 1, chapter 4.11, Springer Verlag, 6th edition, 2000.

    Google Scholar 

  17. R. B. Marks, “A multiline method of network analyzer calibration”, IEEE Transactions on Microwave Theory and Techniques, vol. 39, pp. 1205--1215, July 1991.

    Google Scholar 

  18. D. Pozar, Microwave Engineering, Wiley, 2nd edition, 1998.

    Google Scholar 

  19. J. C. Tippet and R. A. Speciale, “A Rigorous Technique or Measuring the Scattering Matrix of a Multiport Device with a 2-port Network Analyzer”, IEEE Transactions on Microwave Theory and Techniques, vol. 30, pp. 661--666, May 1982.

    Google Scholar 

  20. S. Belkin, “Differential Circuit Characterization with Two-Port S-Parameters”, IEEE Microwave Magazine, vol. 7, pp. 86--99, December 2006.

    Google Scholar 

  21. M. Spirito, M. P. van der Heijden, M. de Kok, and L. C. N. de Vrede, “A calibration procedure for on-wafer differential load-pull measurements”, in Proc. IEEE 61st ARFTG Conference, pp. 1--4, Philadelphia, USA, June 2003.

    Google Scholar 

  22. V. A. Monaco and P. Tiberio, “Computer-Aided Analysis of Microwave Circuits”, IEEE Transactions on Microwave Theory and Techniques, vol. 22, pp. 249--263, March 1974.

    Google Scholar 

  23. K. C. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits, chapter 11.2.2, Artech House, 1981.

    Google Scholar 

  24. V. Issakov, H. Knapp, M. Wojnowski, A. Thiede, W. Simbürger, G. Haider, and L. Maurer, “ESD-protected 24 GHz LNA for Radar Applications in SiGe:C Technology”, in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 1--4, San Diego, USA, January 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Issakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Issakov, V. (2010). Measurement Techniques. In: Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13598-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13598-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13597-2

  • Online ISBN: 978-3-642-13598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics