Skip to main content
  • 1867 Accesses

Abstract

Accurate modeling of components is essential for circuit design at microwave frequencies. Particular care is required during the design stage in order to consider the necessary parasitic effects. In the designs throughout this work all the passive components and the on-chip interconnects, including the pads and the transmission lines leading to the active components, are carefully simulated using the 2.5D fieldsolver SonnetEM. The obtained S-parameter models of the metallization are then included in simulations in Agilent‘s Advanced Design System (ADS). However, using S-parameter models in time-domain simulations often leads to convergence and causality issues. Therefore, in some cases lumped element equivalent circuits are used instead of the frequency based data to model passive on-chip components. This requires techniques to fit accurately frequency dependent S-parameters to an equivalent circuit in a given frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kang, J. Gil, and H. Shin, “A Simple Parameter Extraction Method of Spiral On-Chip Inductors”, IEEE Transactions on Electron Devices, vol. 52, pp. 1976--1981, September 2005.

    Google Scholar 

  2. Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J.-O. Plouchart, R. A. Wachnik, T.-J. King, and C. Hu, “Frequency-Independent Equivalent-Circuit Model for On-Chip Spiral Inductors”, IEEE Journal of Solid-State Circuits, vol. 38, pp. 419--426, March 2003.

    Google Scholar 

  3. R. Neumayer, A. Stelzer, F. Haslinger, and R. Weigel, “On the Synthesis of Equivalent- Circuit Models for Multiports Characterized by Frequency-Dependent Parameters”, IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 2789--2796, December 2002.

    Google Scholar 

  4. V. Issakov, A. Thiede, M. Wojnowski, K. Büyüktas, and W. Simbürger, “Fast Analytical Parameters Fitting of Planar Spiral Inductors”, in IEEE Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), pp. 1--10, Tel Aviv, Israel, May 2008.

    Google Scholar 

  5. C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon”, IEEE Transactions on Electron Devices, vol. 47, pp. 560--568, March 2000.

    Google Scholar 

  6. R. Thüringer, An Integrated 17 GHz Transmitter in 0.13?m CMOS forWireless Applications, Dissertation, Institut für Nachrichten- und Hochfrequenztechnik der TU Wien, 2005.

    Google Scholar 

  7. O. Zinke and H. Brunswig, Hochfrequenztechnik 1, chapter 4.11, Springer Verlag, 6th edition, 2000.

    Google Scholar 

  8. D. Pozar, Microwave Engineering, Wiley, 2nd edition, 1998.

    Google Scholar 

  9. J. F. Epperson, An introduction to numerical methods and analysis, chapter 4.10, Wiley, 2007.

    Google Scholar 

  10. J. Tao, P. Findley, and G.A. Rezvani, “Novel realistic short structure construction for parasitic resistance de-embedding and on-wafer inductor characterization”, in Proc. of the IEEE Conf. on Microelectronic Test Structures, pp. 187--190, San Jose, USA, April 2005.

    Google Scholar 

  11. T. Misaki, H. Tsuboi, K. Itaka, and T. Hara, “Computation of Three-Dimensional Electric Field Problems by a Surface Charge Method and its Application to Optimum Insulator Design”, IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, pp. 627--634, March 1982.

    Google Scholar 

  12. F. H. Read, A. Adams, and J. R. Soto-Montiel, “Electrostatic Cylinder Lenses I: Twoelement Lenses”, Journal of Physics E: Scientific Instruments, vol. 4, pp. 625--632, September 1971.

    Google Scholar 

  13. O. Fujiwara and T. Ikawa, “Numerical Calculation of Human-Body Capacitance by Surface Charge Method”, Electronics and Communications in Japan, Part 1, vol. 85, pp. 38--44, 2002.

    Google Scholar 

  14. D. K. Reitan and T. J. Higgins, “Electrical capacitance of the unit cube”, Journal of Applied Physics, vol. 22, pp. 223--226, February 1951.

    Google Scholar 

  15. F. H. Read and N. J. Bowring, “Ultimate numerical accuracy of the surface charge method for electrostatics”, in International Conference on Computation in Electromagnetics (CEM), pp. 57--61, Bath, UK, April 1996. IEE.

    Google Scholar 

  16. A. Tatematsu, S. Hamada, T. Takuma, and H. Morii, “A study on the accuracy of surface charge measurement”, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, pp. 406--415, June 2002.

    Google Scholar 

  17. E. Goto, Y. Shi, and N. Yoshida, “Extrapolated surface charge method for capacity calculation of polygons and polyhedra”, Journal of computational physics, vol. 100, pp. 105--115, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Issakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Issakov, V. (2010). Modeling Techniques. In: Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13598-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13598-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13597-2

  • Online ISBN: 978-3-642-13598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics