Skip to main content

Abstract

Automotive safety systems require information about the objects in the vicinity of the vehicle. These data are usually obtained by sensing the surroundings. A typical sensor system usually transmits a signal and estimates the attributes of the available targets, such as velocity or distance from the sensor, based on the measurement of the scattered signal. The signal used for this purpose in radar (radio detection and ranging) systems is an electromagnetic (EM) wave at microwave frequencies. The main advantage of radar systems compared to other alternatives such as sonar or lidar is the immunity to weather conditions and potential for lower cost realization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Dehlink, Integrated Millimeter Wave Front-End Design in SiGe Bipolar Technology, Dissertation, Institut für Nachrichten- und Hochfrequenztechnik der TU Wien, 2007.

    Google Scholar 

  2. K. Chang, RF and Microwave Wireless Systems, Wiley, 2000.

    Google Scholar 

  3. M. Skolnik, Introduction to Radar Systems, McGraw-Hill, 1981.

    Google Scholar 

  4. Naval Air Warfare Center US Navy, Electronic Warfare and Radar Systems Engineering Handbook, http://www.microwaves101.com/encyclopedia/Navy_Handbook.cfm, 1999.

  5. A. G. Stove, “Linear FMCW radar techniques”, IEE Proceedings F, Radar and Signal Processing, vol. 139, pp. 343--350, October 1992.

    Google Scholar 

  6. V. Cojocaru, H. Kurata, D. Humphrey, B. Clarke, T. Yokoyama, V. Napijalo, T. Young, and T. Adachi, “A 24 GHz Low-Cost, Long-Range, Narrow-Band, Monopulse Radar Front End System for Automotive ACC Applications”, in IEEE MTT-S International Microwave Symposium (IMS) Digest, pp. 1327--1330, Honolulu, USA, June 2007.

    Google Scholar 

  7. R. Mende, “UMRR: A 24 GHz Medium Range Radar Platform”, http://smartmicro.de/UMRR_-_A_Medium_Radar_Radar_Platform.pdf, July 2003.

  8. European Telecommunications Standards Institute ETSI, “European Standard EN 302 288-1 Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Short Range Devices; Road Transport and Traffic Telematics (RTTT); Short Range Radar Equipment Operating in the 24 ghz Range; Part 1: Technical Requirements and Methods of Measurement”, http://www.etsi.org/WebSite/Technologies/AutomotiveRadar.aspx, May 2006.

  9. H. Darabi and J. Chiu, “A Noise Cancellation Technique in Active RF-CMOS Mixers”, IEEE Journal of Solid-State Circuits, vol. 40, pp. 2628--2632, Dec 2005.

    Google Scholar 

  10. R. M. Kodkani and L. E. Larson, “A 24-GHz CMOS Passive Subharmonic Mixer/Downconverter for Zero-IF Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 56, pp. 1247--1256, May 2008.

    Google Scholar 

  11. J. Crols and M. Steyaert, CMOS Wireless Transceiver Design, Springer, 1997.

    Google Scholar 

  12. K.M. Strohm, H.-L. Bloecher, R. Schneider, and J. Wenger, “Development of future short range radar technology”, in European Radar Conference (EuRAD), pp. 165--168, Paris, France, October 2005.

    Google Scholar 

  13. J. Wenger, “Short range radar - being on the market”, in European Radar Conference (EuRAD), pp. 255--258, Munich, Germany, October 2007.

    Google Scholar 

  14. R. Weber and N. Kost, “24-GHz-Radarsensoren für Fahrerassistenzsysteme”, ATZ Elektronik, vol. 2, pp. 16--22, 2006, http://www.atzonline.de/Artikel/3/3349/24-GHz-Radarsensoren-fuer-Fahrerassistenzsysteme.html.

  15. H. Rohling and M.-M. Meinecke, “Waveform design principles for automotive radar systems”, in CIE International Conference on Radar, pp. 1--4, Beijing, China, October 2001.

    Google Scholar 

  16. M. Schneider, “Automotive Radar Status and Trends”, in German Microwave Conference (GeMiC), pp. 144--147, Ulm, Germany, April 2005.

    Google Scholar 

  17. J. Godin, M. Riet, S. Blayac, P. Berdaguer, J.-L. Benchimol, A. Konczykowska, A. Kasbari, P. Andre, and N. Kauffman, “Improved InGaAs/InP DHBT Technology for 40Gbit/s Optical Communication Circuits”, in IEEE GaAs IC Symposium Technical Digest, pp. 77--80, Seattle, USA, November 2000.

    Google Scholar 

  18. J.-E. Müller, T. Grave, H. J. Siweris, M. Kärner, A. Schäfer, H. Tischer, H. Riechert, L. Schleicher, L. Verweyen, A. Bangert, W. Kellner, and T. Meier, “A GaAs HEMT MMIC Chip Set for Automotive Radar Systems Fabricated by Optical Stepper Lithography”, IEEE Journal of Solid-State Circuits, vol. 32, pp. 1342--1349, September 1997.

    Google Scholar 

  19. R. Troppmann and A. Höger, “ACC-Systeme Hardware, Software und Co. - Teil 2”, available at www.hanser-automotive.de/fileadmin/heftarchiv/2004/4918.pdf, Hanser Automotive, vol. 3, pp. 58-62, May 2005.

  20. W. Lehbrink, “Radar-Chips aus SiGe”, available at www.hanser-automotive.de/uploads/media/24380.pdf, Hanser Automotive, vol. 2, pp. 14-18, March 2008.

  21. V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A Single-Chip Dual-Band 22-to-29 GHz/77- to-81 GHz BiCMOS Transceiver for Automotive Radar”, in IEEE International Solid-State Circuits Conference (ISSCC), pp. 308--309, San Francisco, February 2009. IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Issakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Issakov, V. (2010). Radar Systems. In: Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13598-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13598-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13597-2

  • Online ISBN: 978-3-642-13598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics