Skip to main content

Rigid and Globally Rigid Graphs with Pinned Vertices

  • Chapter
Fete of Combinatorics and Computer Science

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 20))

Abstract

We consider rigid and globally rigid bar-and-joint frameworks (resp. graphs) in which some joints (resp. vertices) are pinned down and hence their positions are fixed. We give an overview of some old and new results of this branch of combinatorial rigidity with an emphasis on the related optimization problems.

In one of these problems the goal is to find a set P of vertices of minimum total cost for which the positions of all vertices become uniquely determined when P is pinned down. For this problem, which is motivated by the localization problem in wireless sensor networks, we give a constant factor approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson and P. N. Belhumeur, A theory of network localization, IEEE Trans, on Mobile Computing, vol. 5, issue 12 (2006), pp. 1663–1678.

    Article  Google Scholar 

  2. G. Baudis, C. Gröp l, S. Hougardy, T. Nierhoff and H. J. Prömel, Approximating minimum spanning sets in hypergraphs and polymatroids, Tech. Report, Humboldt-Universität zu Berlin, 2000.

    Google Scholar 

  3. A. R. Berg and T. Jordan, A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid, J. Combinatorial Theory, Ser. B., Vol. 88 (2003), 77–97.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. R. Berg and T. Jordán, Algorithms for graph rigidity and scene analysis, Proc. 11th Annual European Symposium on Algorithms (ESA), 2003, (G. Di Battista, U. Zwick, eds.), Springer Lecture Notes in Computer Science 2832 (2003), pp. 78–89.

    Google Scholar 

  5. R. Connelly, On generic global rigidity, Applied geometry and discrete mathematics, 147–155, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc, Providence, RI (1991).

    Google Scholar 

  6. R. Connelly, Generic global rigidity, Discrete Comput. Geom., 33 (2005), no. 4, 549–563.

    Article  MATH  MathSciNet  Google Scholar 

  7. Z. Fekete, Source location with rigidity and tree packing requirements, Operations Research Letters, 34, Issue 6 (2006), pp. 607–612.

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Fekete and T. Jordán, Uniquely localizable networks with few anchors, Proc. 4th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, Budapest (June 2005), pp. 144–148.

    Google Scholar 

  9. Z. Fekete and T. Jordán, Uniquely localizable networks with few anchors, Proc. Algosensors, 2006, (S. Nikoletseas and J. D. P. Rolim, eds.) Springer Lecture Notes in Computer Science 4240 (2006), pp. 176–183.

    Google Scholar 

  10. J. Graver, B. Servatius and H. Servatius, Combinatorial Rigidity, AMS Graduate Studies in Mathematics Vol. 2 (1993).

    Google Scholar 

  11. B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput., 21 (1992), no. 1, 65–84.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J. Comput, 2 (1973), 135–158.

    Article  MathSciNet  Google Scholar 

  13. B. Jackson and T. Jordán, Connected rigidity matroids and unique realizations of graphs, J. Combinatorial Theory Ser B, Vol. 94 (2005), 1–29.

    Article  MATH  Google Scholar 

  14. B. Jackson and T. Jordán, The d-dimensional rigidity matroid of sparse graphs, J. Combinatorial Theory Ser B, Vol. 95 (2005), 118–133.

    Article  MATH  Google Scholar 

  15. B. Jackson and T. Jordán, Graph theoretic techniques in the analysis of uniquely localizable sensor networks, in: Localization algorithms and strategies for wireless sensor networks, G. Mao, B. Fidan (eds.), IGI Global (2009), pp. 146–173.

    Google Scholar 

  16. B. Jackson, T. Jordán, and Z. Szabadka, Globally linked pairs of vertices in equivalent realizations of graphs, Discrete and Computational Geometry, Vol. 35 (2006), 493–512.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Katoh and S. Tanigawa, On the infinitesimal rigidity of bar-and-slider frameworks, preprint (2009).

    Google Scholar 

  18. G. Laman, On graphs and rigidity of plane skeletal structures, J. Engineering Math., 4 (1970), 331–340.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Lee, I. Streinu and L. Theran, The slider-pinning problem, Proceedings of the 19th Canadian Conference on Computational Geometry, Ottawa, Ontario (August 2007).

    Google Scholar 

  20. M. Lorea, Hypergraphes et matroides, Cahiers Centre Etud. Rech. Oper., 17 (1975), pp. 289–291.

    MATH  MathSciNet  Google Scholar 

  21. L. Lovász, The matroid matching problem, in: Algebraic methods in graph theory, Vols. I and II, Colloquia Mathematica Societatis János Bolyai 25, North-Holland, Amsterdam (1981), pp. 495–517.

    Google Scholar 

  22. L. Lovász, Matroid matching and some applications, J. Combin. Theory Ser. B, 28 (1980), no. 2, 208–236.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Lovász and Y. Yemini, On generic rigidity in the plane, SIAM J. Algebraic Discrete Methods, 3 (1982), no. 1, 91–98.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Makai and J. Szabö, The parity problem of polymatroids without double circuits, Combinatorica, 28(6) (2008), pp. 679–692.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Mansfield, On the computational complexity of a rigidity problem, IMA J. Appl. Math., 27 (1981), no. 4, 423-429.

    Google Scholar 

  26. A. Recski, Matroid theory and its applications in electric network theory and in statics, Akadémiai Kiadö, Budapest (1989).

    Google Scholar 

  27. A. Schrijver, Combinatorial optimization, Springer (2003).

    Google Scholar 

  28. B. Servatius, O. Shai and W. Whiteley, Combinatorial characterization of the Assur graphs from engineering, Europ. J. Combin., in press.

    Google Scholar 

  29. A. M. So and Y. Ye, Theory of semidefinite programming for sensor network localization, Math. Program., 109 (2007), no. 2-3, Ser. B, 367–384.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Szabó, Matroid parity and jump systems: a solution to a conjecture of Recski, SIAM J. Discrete Math., Vol. 22, No. 3 (2008), pp. 854–860.

    Article  MATH  MathSciNet  Google Scholar 

  31. W. Whiteley, Some matroids from discrete applied geometry. Matroid theory (Seattle, WA, 1995), 171–311, Contemp. Math., 197, Amer. Math. Soc, Providence, RI (1996).

    Google Scholar 

  32. W. Whiteley, Rigidity and scene analysis, in: Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), CRC Press, Second Edition (2004), pp. 1327–1354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Jordán, T. (2010). Rigid and Globally Rigid Graphs with Pinned Vertices. In: Katona, G.O.H., Schrijver, A., Szőnyi, T., Sági, G. (eds) Fete of Combinatorics and Computer Science. Bolyai Society Mathematical Studies, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13580-4_7

Download citation

Publish with us

Policies and ethics