Skip to main content

Designing Biomass Crops with Improved Calorific Content and Attributes for Burning: a UK Perspective

  • Chapter
  • First Online:
Plant Biotechnology for Sustainable Production of Energy and Co-products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 66))

Abstract

Recently, there has been tremendous world-wide interest in dedicated energy crops as a source of renewable carbon neutral feed-stocks for the production of energy and heat by combustion processes. However, in order for the potential benefits of decreased greenhouse gas emissions and improved fuel security to be delivered, it will be essential for the cultivation of these crops to be achieved in a sustainable manner. In this chapter we identify those species with greatest potential for cultivation in the UK, explore the effect of biomass chemical composition on combustion efficiency and, with particular focus on Miscanthus species, discuss how these crops may be best improved by strategies including genetic engineering, gene discovery and breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acaroglu M, Semi Aksoy A (2005) The cultivation and energy balance of Miscanthus x giganteus production in Turkey. Biomass Bioenergy 29:42–48

    Google Scholar 

  • Allison GG, Thain SC, Morris P, Morris C, Hawkins S, Hauck B, Barraclough T, Yates N, Shield I, Bridgwater AV, Donnison IS (2009a) Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. Bioresour Technol 100:1252–1261

    PubMed  CAS  Google Scholar 

  • Allison GG, Morris C, Hodgson E, Jones J, Kubacki M, Barraclough T, Yates N, Shield I, Bridgwater AV, Donnison IS (2009b) Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. Bioresour Technol 100:6428–6433

    PubMed  CAS  Google Scholar 

  • Alves A, Schwanninger M, Pereira H, Rodrigues J (2006) Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method. Holzforschung 60:29–31

    CAS  Google Scholar 

  • Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari E (2009) Comparison of Arundo donax L, Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioenergy 33:635–643

    Google Scholar 

  • Argillier O, Barrière Y, Lila M, Jeanneteau F, Gélinet K, Ménanteau V (1996) Genotypic variation in phenolic components of cell-walls in relation to the digestibility of maize stalks. Agronomie 16:123–130

    Google Scholar 

  • Atanassova R, Favet N, Martz F, Chabbert B, Tollier MT, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8:465–477

    CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952

    PubMed  CAS  Google Scholar 

  • Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777

    CAS  Google Scholar 

  • Barriere Y, Ralph J, Mechin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 327:847–860

    CAS  Google Scholar 

  • Barsberg S, Matousek P, Towrie M, Jørgensen H, Felby C (2006) Lignin radicals in the plant cell wall probed by Kerr-gated resonance Raman spectroscopy. Biophys J 90:2978–2986

    PubMed  CAS  Google Scholar 

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    PubMed  CAS  Google Scholar 

  • Boudet A-M (1998) A new view of lignification. Trends Plant Sci 3:67–71

    Google Scholar 

  • Bouton J (2008) Improvement of switchgrass as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 295–308

    Google Scholar 

  • Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgwater AV, Barraclough T, Shield I, Yates N, Thain SC, Donnison IS (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86:60–72

    CAS  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    CAS  Google Scholar 

  • Buddenhagen CE, Chimera C, Clifford P (2009) Assessing biofuel crop invasiveness: a case study. Plos ONE 4:e5261 http://www.plosone.org

    PubMed  Google Scholar 

  • Bullard M (1999) MAFF final report for project NF0403:Miscanthus agronomy (for fuel and industrial uses) www.ienica.net/usefulreports/miscanreport.pdf

  • Bunzel M, Ralph J, Funk C, Steinhart H (2003) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217:128–133

    CAS  Google Scholar 

  • Bunzel M, Funk C, Steinhart H (2004) Semipreparative isolation of dehydrodiferulic and dehydrotriferulic acids as standard substances from maize bran. J Sep Sci 27:1080–1086

    PubMed  CAS  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol 110:3–13

    PubMed  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    PubMed  CAS  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420

    PubMed  CAS  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    PubMed  CAS  Google Scholar 

  • Casler MD, Cherney J, Brummer E (2009) Biomass yield of naturalized populations and cultivars of reed canary grass. Bioenergy Res 2:165–173

    Google Scholar 

  • Chang MCY (2007) Harnessing energy from plant biomass. Curr Opin Chem Biol 11:677–684

    PubMed  CAS  Google Scholar 

  • Chen L, Carpita NC, Reiter W-D, Wilson RH, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16:385–392

    PubMed  CAS  Google Scholar 

  • Chisholm CJ (1994) Reed canary grass. In: Chisholm CJ (ed) Towards a UK research strategy for alternative crops. Silsoe Research Institute, Ministry of Agriculture Fisheries and Food, Agricultural Development and Advisory Service, UK

    Google Scholar 

  • Clifton-Brown JC, Neilson B, Lewandowski I, Jones MB (2000) The modelled productivity of Miscanthus x giganteus (Greef et Deu) in Ireland. Ind Crops Prod 12:97–109

    Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Change Biol 10:509–518

    Google Scholar 

  • Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop Miscanthus. Glob Change Biol 13:2296–2307

    Google Scholar 

  • Clifton-Brown JC, Chiang Y-C, Hodkinson TR (2008a) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermis W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294

    Google Scholar 

  • Clifton-Brown JC, Robson P, Allison G, Lister S, Sanderson R, Hodgson E, Farrar K, Hawkins S, Jensen E, Jones S, Huang L, Roberts P, Youell S, Jones B, Wright A, Valantine J, Donnison I (2008b) Miscanthus: breeding our way to a better future. In: Booth E, Green M, Karp A, Shield I, Stock D, Turley D (eds) Biomass and energy crops III. Association of Applied Biologists, Warwick, pp 199–206

    Google Scholar 

  • Conte RA, van Veen EH, de Loos-Vollebregt MTC (1999) Fast survey analysis of biomass by-product samples based on ICP optical emission spectra. Fresenius J Anal Chem 364:666–672

    CAS  Google Scholar 

  • Cornell University (2006) Ash content of grasses for biofuels Bioenergy Information Sheet. http://grassbioenergy.org/downloads/Bioenergy_Info_Sheet_5.pdf

  • Davis JM (2008) Genetic improvement of poplar (Populus spp.) as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 377–396

    Google Scholar 

  • Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146

    PubMed  CAS  Google Scholar 

  • De Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390

    Google Scholar 

  • Deckmyn G, Laureysens I, Garcia J, Muys B, Ceulemans R (2004) Poplar growth and yield in short rotation coppice: model simulations using the process model SECRETS. Biomass Bioenergy 26:221–227

    Google Scholar 

  • Decruyenaere V, Lecomte P, Demarquilly C, Aufrere J, Dardenne P, Stilmant D, Buldgen A (2009) Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): developing a global calibration. Anim Feed Sci Technol 148:138–156

    CAS  Google Scholar 

  • Deinum B, Struik PC (1989) Genetic variation in digestibility of forage maize (Zea mays L.) and its estimation by near infrared reflectance spectroscopy (NIRS). An analysis. Euphytica 42:89–98

    Google Scholar 

  • Del Rio JC, Gutierrez A, Rodriguez IM, Ibarra D, Martinez AT (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FTIR. J Anal Appl Pyrolysis 79:39–46

    Google Scholar 

  • Demirbas A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manage 42:183–188

    CAS  Google Scholar 

  • Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12:65–70

    Google Scholar 

  • Department of Trade and Industry (1998) Volume 3: Converting wood fuel to energy. http://www.berr.gov.uk/files/file14937.pdf

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577

    PubMed  CAS  Google Scholar 

  • Dhillon BS, Paul C, Zimmer E, Gurrath PA, Klein D, Pollmer WG (1990) Variation and covariation in stover digestibility traits in diallele crosses of maize. Crop Sci 30:931–936

    Google Scholar 

  • DTI (2006) A trial of the suitability of switchgrass and reed canary grass as biofuel crops under UK conditions. www.berr.gov.uk/files/file34815.pdf

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis atmospheric CO2 and climate. Oecologia 112:285–299

    Google Scholar 

  • El-Nashaar HM, Griffith SM, Steiner JJ, Banowetz GM (2009) Mineral concentration in selected native temperate grasses with potential use as biofuel feedstock. Bioresour Technol 100:3526–3531

    PubMed  CAS  Google Scholar 

  • Environment Agency (2009) Biomass — carbon sink or carbon sinner? www.environment-agency.gov.uk/static/documents/Biomass__carbon_sink_or_carbon_sinner_summary_report.pdf

  • Fahmi R, Bridgwater AV, Thain SC, Donnison IS, Morris PM, Yates N (2007) Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of Lolium and Festuca grasses. J Anal Appl Pyrolysis 80:16–23

    CAS  Google Scholar 

  • Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields quality and stability. Fuel 87:1230–1240

    CAS  Google Scholar 

  • Fairbrother TE, Brink GE (1990) Determination of cell wall carbohydrates in forages by near infrared reflectance spectroscopy. Anim Feed Sci Technol 28:293–302

    CAS  Google Scholar 

  • Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149:337–345

    Google Scholar 

  • Fitzpatrick EM, Jones JM, Pourkashanian M, Ross AB, Williams A, Bartle KD (2008) Mechanistic aspects of soot formation from the combustion of pine wood. Energy Fuels 22:3771–3778

    CAS  Google Scholar 

  • Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    PubMed  CAS  Google Scholar 

  • Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544:191–198

    CAS  Google Scholar 

  • Galletti GC, Bocchini P (1995) Pyrolysis/gas chromatography/mass spectrometry of lignocellulose. Rapid Commun Mass Spectrom 9:815–826

    PubMed  CAS  Google Scholar 

  • Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001

    Google Scholar 

  • Giger-Reverdin S (1995) Review of the main methods of cell wall estimation: interest and limits for ruminants. Anim Feed Sci Technol 55:295–334

    Google Scholar 

  • Gislum R, Micklander E, Nielsen JP (2004) Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Res 88:269–277

    Google Scholar 

  • Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, Dupree P (2003) AtCSLA7 a cellulose synthase-like putative glycosyltransferase is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiol 131:547–557

    PubMed  CAS  Google Scholar 

  • Grabber JH (2005) How do lignin composition structure and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J, Zon J, Amrhein N (1995) Ferulate cross-linking in cell-walls isolated from maize cell-suspensions. Phytochemistry 40:1077–1082

    CAS  Google Scholar 

  • Gresits I, Könczöl K (2003) Determination of trace elements in Mycobacterium fortuitum by x-ray fluorescence spectrometry. X-Ray Spectrom 32:413–417

    CAS  Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barriere Y, Pichon M, Goffner D (2007) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143:339–363

    PubMed  CAS  Google Scholar 

  • Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    PubMed  CAS  Google Scholar 

  • Halpin C, Boerjan W (2003) Stacking transgenes in forest trees. Trends Plant Sci 8:363–365

    PubMed  CAS  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1) — a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    PubMed  CAS  Google Scholar 

  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Stampfl P, Smith P (2009) Future energy potential of Miscanthus in Europe. Glob Change Biol Bioenergy 1:180–196

    Google Scholar 

  • Hatfield RD, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839

    CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (1999a) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 79:403–407

    CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (1999b) Cell wall structural foundations: molecular basis for improving forage digestibilities. Crop Sci 39:27–37

    CAS  Google Scholar 

  • Haughton AJ, Bond AJ, Lovett AA, Dockerty T, Sünnenberg G, Clark SJ, Bohan DA, Sage RB, Mallot MD, Mallot VE, Cunningham MD, Riche AB, Shield IF, Finch JW, Turner MM, Karp A (2009) A novel integrated approach to assessing social economic and environmental implications of changing rural land-use: a case study of perennial biomass crops. J Appl Ecol 46:315–322

    Google Scholar 

  • Heaton E, Voigt T, Long SP (2004a) A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Google Scholar 

  • Heaton EA, Long SP, Voigt TB, Jones MB, Clifton-Brown J (2004b) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strateg Glob Change 9:433–451

    Google Scholar 

  • Hein KRG, Bemtgen JM (1998) EU clean coal technology—co-combustion of coal and biomass. Fuel Process Technol 54:159–169

    CAS  Google Scholar 

  • Hillier J, Whittaker C, Dailey G, Aylott M, Casella E, Richter GM, Riche A, Murphy R, Taylor G, Smith P (2009) Greenhouse gas emissions from four bio-energy crops in England and Wales: integrating spatial estimates of yield and soil C balance in life cycle analyses. Glob Change Biol Bioenerg 1:267–281

    CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    PubMed  CAS  Google Scholar 

  • Huang C, Han L, Liu X, Yang Z (2007) Proximate analysis and calorific value estimation of rice straw by near infrared reflectance spectroscopy. Waste Manage 29:1793–1797

    Google Scholar 

  • Huang Y, McIlveen-Wright D, Rezvani S, Wang YD, Hewitt N, Williams BC (2006) Biomass co-firing in a pressurized fluidized bed combustion (PFBC) combined cycle power plant: a techno-environmental assessment based on computational simulations. Fuel Process Technol 87:927–934

    CAS  Google Scholar 

  • IENICA (2009) Crops database. http://www.ienica.net/cropsdatabase.htm

  • Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–76

    CAS  Google Scholar 

  • Jørgensen U (1997) genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass Bioenergy 12:155–169

    Google Scholar 

  • Jung H-JG, Buxtono DR (1994) Forage quality variation among maize inbreds: relationships of cell-wall composition and in-vitro degradability for stem internodes. J Sci Food Agric 66:313–322

    CAS  Google Scholar 

  • Jung HG, Mertens DR, Buxton DR (1998) Forage quality variation among maize inbreds: in vitro fiber digestion kinetics and prediction with NIRS. Crop Sci 38:205–210

    Google Scholar 

  • Kaltschmitt M, Reinhardt GA, Stelzer T (1997) Life cycle analysis of biofuels under different environmental aspects. Biomass Bioenergy 12:121–134

    CAS  Google Scholar 

  • Küçük MM, Demirbas A (1997) Biomass conversion processes. Energy Convers Manage 38:151–165

    Google Scholar 

  • Kubo H, Peeters AJM, Aarts MGM, Pereira A, Koornneef M (1999) ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell 11:1217–1226

    PubMed  CAS  Google Scholar 

  • Kurunczi S, Török S, Chevallier P (2001) A micro-XRF study of the element distribution on the growth front of mussel shell (species of Unio Crassus Retzius). Microchim Acta 137:41–48

    CAS  Google Scholar 

  • Labbé N, Lee S-H, Cho H-W, Jeong MK, André N (2008) Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods. Bioresour Technol 99:8445–8452

    PubMed  Google Scholar 

  • Labrecque M, Teodorescu TI (2005) Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 29:1–9

    Google Scholar 

  • Leckner B (2007) Co-combustion a summary of technology. http://www.energy-pathways.org/pdf/R5_co-combustion.pdf

    Google Scholar 

  • Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. Eur J Agron 6:163–177

    Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Anderson B, Basch B, Christian DG, Jørgensen U, Jones MB, Riche AB, Schwartz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 95:1274–1280

    Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944

    PubMed  CAS  Google Scholar 

  • Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    PubMed  CAS  Google Scholar 

  • Lundvall JP, Buxton DR, Hallauer AR, George JR (1994) Forage quality variation among maize inbreds: in vitro digestibility and cell-wall components. Crop Science 34:1672–1678

    Google Scholar 

  • Marita JM, Vermerris W, Ralph J, Hatfield RD (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51:1313–1321

    PubMed  CAS  Google Scholar 

  • McCann MC, Carpita NC (2008) Designing the deconstruction of plant cell walls. Curr Opin Plant Biol 11:314–320

    PubMed  CAS  Google Scholar 

  • McCann MC, Defernez M, Urbanowicz BR, Tewari JC, Langewisch T, Olek A, Wells B, Wilson RH, Carpita NC (2007) Neural network analyses of infrared spectra for classifying cell wall architectures. Plant Physiol 143:1314–1326

    PubMed  CAS  Google Scholar 

  • McKendry P (2002a) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    PubMed  CAS  Google Scholar 

  • McKendry P (2002b) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    PubMed  CAS  Google Scholar 

  • Méchin V, Argillier O, Menanteau V, Barrière Y, Mila I, Pollet B, Lapierre C (2000) Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J Sci Food Agric 80:574–580

    Google Scholar 

  • Méchin V, Baumberger S, Pollet B, Lapierre C (2007) Peroxidase activity can dictate the in vitro lignin dehydrogenative polymer structure. Phytochemistry 68:571–579

    PubMed  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    PubMed  CAS  Google Scholar 

  • Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 4:103–116

    CAS  Google Scholar 

  • Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

    PubMed  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    PubMed  CAS  Google Scholar 

  • Moller R, Toonen M, van Beilen J, Salentijn E, Clayton D (2007) Crop platforms for cell wall biorefining: lignocellulose feedstocks. http://www.epobio.net/pdfs/0704LignocelluloseFeedstocksReport.pdf

  • Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32:216–223

    CAS  Google Scholar 

  • Monti A, Fazio S, Venture G (2009) Cradle-to-farm gate life cycle assessment in perennial crops. Eur J Agron 31:77–84

    Google Scholar 

  • Monties B (1989) Lignins. In: Harborne JB (ed) Plant phenolics. Academic, London, pp 113–157

    Google Scholar 

  • Morreel K, Ralph J, Kim H, Lu F, Goeminne G, Ralph S, Messens E, Boerjan W (2004) Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiol 136:3537–3549

    PubMed  CAS  Google Scholar 

  • Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257

    PubMed  CAS  Google Scholar 

  • National Non-Food Crops Centre (2009) Area statistics for non-food crops. http://www.nnfcc.co.uk/metadot/index.pl?id=2179;isa=Category;op=show

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    PubMed  CAS  Google Scholar 

  • Nix J (2007) Farm management pocketbook. Imperial College at Wye, University of London, pp 71–72

    Google Scholar 

  • Obernberger I, Brunner T, Bärnthaler G (2006) Chemical properties of solid biofuels — significance and impact. Biomass Bioenergy 30:973–982

    CAS  Google Scholar 

  • Oliver RJ, Finch JW, Taylor G (2009) Second generation bioenergy crops and climatic change: a review of the effects of elevated atmospheric CO2 and drought on water use and implications for yield. Glob Change Biol Bioenerg 1:97–114

    CAS  Google Scholar 

  • Opanowicz M, Vain P, Draper J, Parker D, Doonan JH (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177

    PubMed  CAS  Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27:613–620

    Google Scholar 

  • Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003) Characterisation of a pine MYB that regulates lignification. Plant J 36:743–754

    PubMed  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    PubMed  CAS  Google Scholar 

  • Price L, Bullard M, Lyons H, Anthony S, Nixon P (2004) Identifying the yield potential of Miscanthus x giganteus: an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass Bioenergy 26:3–13

    Google Scholar 

  • Ptasinski KJ, Prins MJ, Pierik A (2007) Exergetic evaluation of biomass gasification. Energy 32:568–574

    CAS  Google Scholar 

  • Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    PubMed  CAS  Google Scholar 

  • Ralph J, Lapierre C, Marita JM, Kim H, Lu FC, Hatfield RD, Ralph S, Chapple C, Franke R, Hemm MR, Van Doorsselaere J, Sederoff RR, O’Malley DM, Scott JT, MacKay JJ, Yahiaoui N, Boudet AM, Pean M, Pilate G, Jouanin L, Boerjan W (2000) Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry 57:993–1003

    Google Scholar 

  • Ralph J, Lapierre C, Lu FC, Marita JM, Pilate G, Van Doorsselaere J, Boerjan W, Jouanin L (2001) NMR evidence for benzodioxane structures resulting from incorporation of 5-hydroxyconiferyl alcohol into lignins of O-methyltransferase-deficient poplars. J Agric Food Chem 49:86–91

    PubMed  CAS  Google Scholar 

  • Renewable Fuels Agency (2008) The Gallagher review of the indirect effects of biofuels production http://www.renewablefuelsagency.org/_db/_documents/Report_of_the_Gallagher_review.pdf

  • Robbins MP, Paolocci F, Hughes J-W, Turchetti V, Allison G, Arcioni S, Morris P, Damiani F (2003) Sn a maize bHLH gene modulates anthocyanin and condensed tannin pathways in Lotus corniculatus. J Exp Bot 54:239–248

    PubMed  CAS  Google Scholar 

  • Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Sustainable biofuels redux. Science 322:49–50

    PubMed  CAS  Google Scholar 

  • Robinson JM, Barrett SR, Nhoy K, Pandey RK, Phillips J, Ramirez OM, Rodriguez RI (2009) Energy dispersive X-ray fluorescence analysis of sulfur in biomass. Energy Fuels 23:2235–2241

    CAS  Google Scholar 

  • Roth LS, Marten GC, Compton WA, Stuthman DD (1970) Genetic variation of quality traits in maize (Zea mays L.) forage. Crop Sci 10:365–367

    Google Scholar 

  • Royal Society (2008) Sustainable biofuels: prospects and challenges. http://royalsociety.org/displaypagedoc.asp?id=28914

  • Segrest SA, Rockwood DL, Stricker JA, Green AES (1998) Biomass co-firing with coal at lakeland utilities. http://www.treepower.org/papers/energycrops.pdf

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12:2054–2076

    Google Scholar 

  • Smart LB, Cameron KD (2008) Genetic improvements of willow (Salix spp.) as a dedicated bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 347–376

    Google Scholar 

  • Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558

    PubMed  CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) Anthocyanin 1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1631

    PubMed  CAS  Google Scholar 

  • Stern N (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Stern N (2009) Blueprint for a safer planet: how to manage climate change and create a new era of progress and prosperity. Random House, London

    Google Scholar 

  • Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM, Haigh J (1997) Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201:311–318

    PubMed  CAS  Google Scholar 

  • Stewart JR, Toma Y, Fernández FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis a species important to bioenergy crop development in its native range in Japan: a review. Glob Change Biol 1:126–153

    Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    PubMed  CAS  Google Scholar 

  • Upham P, Thornley P, Tomei J, Boucher P (2009) Substitutable biodiesel feedstocks for the UK: a review of sustainability issues with reference to the RTFO. J Cleaner Product 17:S37–S45

    Google Scholar 

  • Van Soest PJ (1963) The use of detergents in the analysis of fibrous feeds: II. A rapid method for the determination of fibre and lignin. J Assoc Off Agric Chem 46:829–835

    Google Scholar 

  • Van Soest PJ (1967) Development of a comprehensive system of feed analyses and its application to forages. J Anim Sci 26:119–128

    Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    PubMed  CAS  Google Scholar 

  • Vermerris W, Boon JJ (2001) Tissue-specific patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.). J Agric Food Chem 49:721–728

    PubMed  CAS  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib 3 (Bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyl transferase. Plant Cell 7:407–416

    PubMed  CAS  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    PubMed  CAS  Google Scholar 

  • Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. American Society of Agronomy, Madison, WI, pp 561–588

    Google Scholar 

  • Waldron KW, Parr AJ, Ng A, Ralph J (1996) Cell wall esterified phenolic dimers: identification and quantification by reverse phase high performance liquid chromatography and diode array detection. Phytochem Anal 7:305–312

    CAS  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    PubMed  CAS  Google Scholar 

  • Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    PubMed  CAS  Google Scholar 

  • Woods J, Tipper R, Brown G, Diaz-Chavez R, Lovell J, de Groot P (2006) Evaluating the sustainability of co-firing in the UK. http://www.dti.gov.uk/files/file34448.pdf

  • Ye ZH, Kneusel RE, Matern U, Varner JE (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6:1427–1439

    PubMed  CAS  Google Scholar 

  • Ye ZH, York WS, Darvill AG (2006) Important new players in secondary wall synthesis. Trends Plant Sci 11:162–164

    PubMed  CAS  Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis—which end is up? Curr Opin Plant Biol 11:258–265

    PubMed  CAS  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    PubMed  CAS  Google Scholar 

  • Zhong R, Ye Z (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the help of Dr. Paul Robson, and their colleagues at IBERS who are associated with or belong to the Miscanthus breeding programme, who were instrumental in growing, phenotyping and harvesting the Miscanthus trait trial. They wish to acknowledge their funders: G.A., M.R. and I. D. are funded as part of the Bioenergy Strategic Programme Grant by the Biotechnology and Biological Science Research Council; J.C.-B. is funded jointly by the Biotechnology and Biological Science Research Council and The Department of Environment, Food and Rural Affairs, and J.C. is funded by the Engineering and Physical Sciences Research Council as part of Supergen Bioenergy (http://www.supergen-bioenergy.net/). Special thanks also to Mrs. Catherine Morris and the staff of the Analytical Chemistry Unit who carried out the chemical analysis of plant samples and to Mrs. Pauline Rees Stevens for proof-reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon G. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allison, G.G., Robbins, M.P., Carli, J., Clifton-Brown, J.C., Donnison, I.S. (2010). Designing Biomass Crops with Improved Calorific Content and Attributes for Burning: a UK Perspective. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_2

Download citation

Publish with us

Policies and ethics