Skip to main content

Design of Scheduling Algorithms: Applications

  • Chapter
  • First Online:
Behavioral Operations in Planning and Scheduling

Abstract

This chapter discusses the insights developed for designing scheduling algorithms according to three design projects where algorithms have been developed. The choice of applications covers a broad spectrum. The methods used are from three different fields, namely combinatorial optimization, genetic (evolutionary) algorithms, and mathematical optimization. The application areas differ also in terms of the role of a human user of the algorithm. Some of these algorithms have been developed without detailed study of the competences of the perceived users. Others have examined humans when performing the scheduling tasks manually, but have not considered the change in cognitive load if the process of planning changes due to the new algorithm and computerized support. Although none of the design projects fulfils all criteria developed in the framework of Chap. 12, we show that the framework helps to assess the design projects and the resulting algorithms, and to identify the main weaknesses in these applications. Finally, we show how they can be addressed in future.

The three application areas are:

  1. 1.

    Decision support for shunting yard scheduling using a network flow heuristic.

  2. 2.

    An evolutionary multi-objective decision tool for job-shop scheduling.

  3. 3.

    Group sequencing. A predictive-reactive scheduling method for job-shop scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science, 34(3), 391–401.

    Article  Google Scholar 

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Artigues, C., Billaut, J.-C., & Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165(2), 314–328.

    Article  Google Scholar 

  • Baykasoglu, A., Özbakir, L., & Dereli, T. (2002). Multiple dispatching rule based heuristic for multi-objective scheduling of job shops using tabu search. Proceedings of the 5th International Conference on Managing Innovations in Manufacturing (pp 396–402). Milvaukee, WI.

    Google Scholar 

  • Billaut, J.-C. (1993). Prise en compte des ressources multiples et des temps de préparation dans les problèmes d'ordonnancement en temps réel. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France.

    Google Scholar 

  • Billaut, J.-C., & Roubellat, F. (1996). A new method for workshop real-time scheduling. International Journal of Production Research, 34(6), 1555–1579.

    Article  Google Scholar 

  • Brucker, P., Jurisch, B., Sievers, B. (1994) A branch and bound algorithm for the job-shop scheduling problem, Discrete Applied Mathematics, 49(1–3), 107–127.

    Google Scholar 

  • Cegarra, J. (2004). La gestion de la complexité dans la planification: le cas de l'ordonnancement. Ph.D. Thesis, Université de Paris 8, France.

    Google Scholar 

  • Chiang, T.-C., & Fu, L.-C. (2006). Multiobjective job shop scheduling using genetic algorithm with cyclic fitness assignment. Proceedings of IEEE World Congress on Computational Intelligence (pp 11035–11042).Vancouver, BC: IEEE.

    Google Scholar 

  • Cordeau, J. F., Toth, P., & Vigo, D. (1998). A survey of optimization models for train routing and scheduling. Transportation Science, 32(4), 380–404.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Demeulemeester, E. L., & Herroelen, W. S. (2002). Project scheduling, a research handbook. Boston, MA: Kluwer Academic.

    Google Scholar 

  • Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Berlin: Springer.

    Google Scholar 

  • Erschler, J., & Roubellat, F. (1989). An approach for real time scheduling for activities with time and resource constraints, Advances in project scheduling. Amsterdam: Elsevier.

    Google Scholar 

  • Esquivel, S., Ferrero, S., Gallard, R., Salto, C., Alfonso, H., & Schütz, M. (1996). Enhanced evolutionary algorithms for single and multiobjective optimization in the job scheduling problem. Knowledge-Based Systems, 15(1–2), 13–25.

    Google Scholar 

  • Esswein, C. (2003). Un apport de flexibilité séquentielle pour l'ordonnancement robuste. Ph.D. Thesis, Université François Rabelais, Tours, France.

    Google Scholar 

  • Fang, H. L., Corne, D., & Ross, P. (1996). A Genetic Algorithm for job-shop problems with various schedule quality criteria. Lecture Notes in Computer Science, 1143, 39–49.

    Article  Google Scholar 

  • Freling, R., Lentink, R. M., Kroon, L. G., & Huisman, D. (2005). Shunting of passenger train units in a railway station. Transportation Science, 39(2), 261–272.

    Article  Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco, CA: W.H. Freeman.

    Google Scholar 

  • Giffler, B., & Thompson, G. L. (1969). Algorithms for solving production scheduling problems. Operations Research, 8, 487–503.

    Article  Google Scholar 

  • Hoc, J.-M. (1988). Cognitive psychology of planning. London: Academic.

    Google Scholar 

  • Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT.

    Google Scholar 

  • Lawrence, S. (1984). Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. Pittsburgh, PA: Carnegie-Mellon University.

    Google Scholar 

  • Mitroff, I. I., Betz, F., Pondy, L. R., & Sagasti, F. (1974). On managing science in the systems age: two schemas for the study of science as a whole systems phenomenon. Interfaces, 4(3), 46–58.

    Article  Google Scholar 

  • Petrovic, D., Duenas, A., & Petrovic, S. (2004). A multi-objective job shop scheduling problem with linguistically quantified decision functions. In C. H. Antunes, & L. C. Dias (Eds.), Proceedings of Mini-EURO Conference 2004, Managing Uncertainty in Decision Support Models (pp. 1–6). Cuoimbra, Portugal: MUDSM04.

    Google Scholar 

  • Pinot, G. (2008). Coopération homme-machine pour l'ordonnancement sous incertitudes. Ph.D. Thesis, Université de Nantes, France.

    Google Scholar 

  • Pinot, G., Cardin, O., & Mebarki, M. (2007). A study on the group sequencing method in regards with transportation in an industrial FMS. Proceedings of the IEEE SMC 2007 Conference (pp. 151–156). Montréal, QC: SMC.

    Google Scholar 

  • Pinot, G., & Mebarki, M. (2008). Best-case lower bounds in a group sequence for the job shop problem: Proceedings of the 17th IFAC World Congress. Seoul, Korea.

    Google Scholar 

  • Riezebos, J., & van Wezel, W. M. C. (2009). K-shortest routing of trains on shunting yards. OR Spectrum, 31(4), 745–758.

    Article  Google Scholar 

  • T’kindt, V., & Billaut, J.-C. (2002). Multicriteria scheduling. Berlin: Springer.

    Google Scholar 

  • Thomas, V. (1980). Aide à la décision pour l’ordonnancement d’atelier en temps réel. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France.

    Google Scholar 

  • van Wezel, W. M. C., & Jorna, R. (2009). Cognition, tasks and planning: supporting the planning of shunting operations at the Netherlands Railways. Cognition, Technology & Work, 11, 165–176.

    Article  Google Scholar 

  • Wu, S. D., Byeon, E.-S., & Storer, R. H. (1999). A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness. Operations Research, 47(1), 113–124.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  • Zwaneveld, P. J., Kroon, L. G., Romeijn, H. E., Salomon, M., Dauzère-Pérès, S., van Hoesel, S. P. M., et al. (1996). Routing trains through railway stations: model formulation and algorithms. Transportation Science, 30(3), 181–194.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Jan Banninga, master student at the University of Groningen, for his assistance in this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Riezebos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Riezebos, J., Hoc, JM., Mebarki, N., Dimopoulos, C., Van Wezel, W., Pinot, G. (2010). Design of Scheduling Algorithms: Applications. In: Fransoo, J., Waefler, T., Wilson, J. (eds) Behavioral Operations in Planning and Scheduling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13382-4_15

Download citation

Publish with us

Policies and ethics