Skip to main content

Fully Dynamic Speed-Up Techniques for Multi-criteria Shortest Path Searches in Time-Dependent Networks

  • Conference paper
Experimental Algorithms (SEA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6049))

Included in the following conference series:

Abstract

We introduce two new speed-up techniques for time-dependent point-to-point shortest path problems with fully-dynamic updates in a multi-criteria setting. Our first technique, called SUBITO, is based on a specific substructure property of time-dependent paths which can be lower bounded by their minimal possible travel time. It requires no preprocessing, and the bounds can be computed on-the-fly for each query. We also introduce k-flags, an extension of arc flags, which assigns to each arc one of k levels for each region of a vertex partition. Intuitively, the higher the level of an arc for a certain destination, the larger the detour with respect to travel time. k-flags allow us to handle dynamic changes without additional time-consuming preprocessing.

In an extensive computational study using the train network of Germany we analyze these and other speed-up techniques with respect to their robustness under high and realistic update rates. We show that speed-up factors are conserved under different scenarios, namely a typical day of operation, distributed delays after “heavy snowfall”, and a major disruption at a single station. In our experiments, k-flags combined with SUBITO have led to the largest speed-up factors, but only marginally better than SUBITO alone. These observations can be explained by studying the distribution of k-flags. It turns out that only a small fraction of arcs can be excluded if one wants to guarantee exact Pareto-optimal point-to-point queries.

This work was partially supported by the DFG Focus Program Algorithm Engineering, grant Mu 1482/4-1. We wish to thank Deutsche Bahn AG for providing us timetable data for scientific use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Müller-Hannemann, M., Schnee, M.: Efficient timetable information in the presence of delays. In: Zaroliagis, C. (ed.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 249–272. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: SODA 2010: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793. SIAM, Philadelphia (2010)

    Google Scholar 

  4. Berger, A., Delling, D., Gebhardt, A., Müller-Hannemann, M.: Accelerating time-dependent multi-criteria timetable information is harder than expected. In: Clausen, J., Stefano, G.D. (eds.) ATMOS 2009 - 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany (2009)

    Google Scholar 

  5. Bauer, R., Delling, D., Wagner, D.: Experimental study on speed-up techniques for timetable information systems. Networks (to appear, 2010)

    Google Scholar 

  6. Bast, H.: Car or public transport—two worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Berger, A., Müller-Hannemann, M.: Subpath-optimality of multi-criteria shortest paths in time-dependent and event-dependent networks. Technical report, Martin-Luther-Universität Halle-Wittenberg, Department of Computer Science (2009)

    Google Scholar 

  8. Wagner, D., Willhalm, T., Zaroliagis, C.D.: Dynamic shortest paths containers. Electr. Notes Theor. Comput. Sci. 92, 65–84 (2004)

    Article  Google Scholar 

  9. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Berrettini, E., D’Angelo, G., Delling, D.: Arc-flags in dynamic graphs. In: Clausen, J., Stefano, G.D. (eds.) ATMOS 2009 - 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany (2009)

    Google Scholar 

  12. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Nannicini, G., Baptiste, P., Krob, D., Liberti, L.: Fast computation of point-to-point paths on time-dependent road networks. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 225–234. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Nannicini, G., Baptiste, P., Barbier, G., Krob, D., Liberti, L.: Fast paths in large-scale dynamic road networks. Computational Optimization and Applications (published online, 2008)

    Google Scholar 

  15. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM 37, 607–625 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, A., Grimmer, M., Müller-Hannemann, M. (2010). Fully Dynamic Speed-Up Techniques for Multi-criteria Shortest Path Searches in Time-Dependent Networks. In: Festa, P. (eds) Experimental Algorithms. SEA 2010. Lecture Notes in Computer Science, vol 6049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13193-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13193-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13192-9

  • Online ISBN: 978-3-642-13193-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics