Skip to main content

Organometallic Antitumour Agents with Alternative Modes of Action

  • Chapter
  • First Online:
Medicinal Organometallic Chemistry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 32))

Abstract

The therapeutic index of drugs that target DNA, a ubiquitous target present in nearly all cells, is low. Nevertheless, DNA has remained the primary target for medicinal chemists developing metal-based anticancer drugs, although DNA has been essentially abandoned in favour of non-genomic targets by medicinal chemists developing organic drugs. A number of organometallic drugs that target proteins/enzymes have been developed and these compounds, based on ruthenium, osmium and gold, are described in this chapter. Targets include cathepsin B, thioredoxin reductases, multidrug resistance protein (Pgp), glutathione S-transferases and kinases. It is found that compounds that inhibit these various targets are active against metastatic tumours, or tumours that are resistant to classical DNA damaging agents such as cisplatin, and therefore offer considerable potential in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong E, Giandomenico CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99:2451–2466

    CAS  Google Scholar 

  2. Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK (2008) Antitumour metal compounds: more than theme and variations. Dalton Trans 2:183–94

    Google Scholar 

  3. Malina J, Novakova O, Keppler BK, Alessio E, Brabec V (2001) Biophysical analysis of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium(III) in cell-free media. J Biol Inorg Chem 6:435–445

    CAS  Google Scholar 

  4. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) From bench to bedside–preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem 100:891–904

    CAS  Google Scholar 

  5. Bacac M, Hotze ACG, van der Schilden K, Haasnoot JG, Pacor S, Alessio E, Sava G, Reedijk J (2004) The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. J Inorg Biochem 98:402–412

    CAS  Google Scholar 

  6. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Redox behavior of tumor-inhibiting ruthenium(III) complexes and effects of physiological reductants on their binding to GMP. Dalton Trans 14:1796–1802

    Google Scholar 

  7. Gallori E, Vettori C, Alessio E, Vilchez FG, Vilaplana R, Orioli P, Casini A, Messori L (2000) DNA as a possible target for antitumor ruthenium(III) complexes. Arch Biochem Biophys 376:156–162

    CAS  Google Scholar 

  8. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Commun 4764–4776.

    Google Scholar 

  9. Egger A, Arion VB, Reisner E, Cebrian-Losantos B, Shova S, Trettenhahn G, Keppler BK (2005) Reactions of Potent Antitumor Complex trans-[RuIIICl4(indazole)2]- with a DNA-Relevant Nucleobase and Thioethers: Insight into Biological Action. Inorg Chem 44:122–132

    CAS  Google Scholar 

  10. Scolaro C, Chaplin AB, Hartinger CG, Bergamo A, Cocchietto M, Keppler BK, Sava G, Dyson PJ (2007) Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Trans 43:5065–5072

    Google Scholar 

  11. Ravera M, Baracco S, Cassino C, Colangelo D, Bagni G, Sava G, Osella D (2004) Electrochemical measurements confirm the preferential bonding of the antimetastatic complex [ImH][RuCl4(DMSO)(Im)] (NAMI-A) with proteins and the weak interaction with nucleobases. J Inorg Biochem 98:984–990

    CAS  Google Scholar 

  12. Gabbiani C, Casini A, Messori L (2007) Gold(III) compounds as anticancer drugs. Gold Bull 40:73–81

    CAS  Google Scholar 

  13. Wang Y, He QY, Sun RW, Che CM, Chiu JF (2007) Cellular pharmacological properties of gold(III) porphyrin 1a, a potential anticancer drug lead. Eur J Pharmacol 554:113–122

    CAS  Google Scholar 

  14. Shi P, Jiang Q, Zhao Y, Zhang Y, Lin J, Lin L, Ding J, Guo Z (2006) DNA binding properties of novel cytotoxic gold(III) complexes of terpyridine ligands: the impact of steric and electrostatic effects. J Biol Inorg Chem 11:745–752

    CAS  Google Scholar 

  15. Mirabelli CK, Sung CM, Zimmerman JP, Hill DT, Mong S, Crooke ST (1986) Interactions of gold coordination complexes with DNA. Biochem Pharmacol 35:1427–1433

    CAS  Google Scholar 

  16. Messori L, Orioli P, Tempi C, Marcon G (2001) Interactions of selected gold(III) complexes with calf thymus DNA. Biochem Biophys Res Commun 281:352–360

    CAS  Google Scholar 

  17. Carotti S, Marcon G, Marussich M, Mazzei T, Messori L, Mini E, Orioli P (2000) Cytotoxicity and DNA binding properties of a chloro glycylhistidinate gold(III) complex (GHAu). Chem Biol Interact 125:29–38

    CAS  Google Scholar 

  18. Dale LD, Tocher JH, Dyson TM, Edwards DI, Tocher DA (1992) Studies on DNA damage and induction of SOS repair by novel multifunctional bioreducible compounds. II. A metronidazole adduct of a ruthenium-arene compound. AntiCancer Drug Des 7:3–14

    CAS  Google Scholar 

  19. Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) [Ru(η6-cymene-p)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells. Chem Comm 1396–1397.

    Google Scholar 

  20. Gossens C, Dorcier A, Dyson PJ, Rothlisberger U (2007) pKa Estimation of ruthenium(II)-arene PTA complexes and their hydrolysis products via a DFT/continuum electrostatics approach. Organometallics 26:3969–3975

    CAS  Google Scholar 

  21. Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171

    CAS  Google Scholar 

  22. Dyson PJ, Sava G (2006) Metal-based antitumour drugs in the post genomic era. Dalton Trans 1929–1933

    Google Scholar 

  23. Ang WH, Daldini E, Scolaro C, Scopelliti R, Juillerat-Jeannerat L, Dyson PJ (2006) Development of organometallic ruthenium-arene anticancer drugs that resist hydrolysis. Inorg Chem 45:9006–9013

    CAS  Google Scholar 

  24. Ratanaphan A, Temboot P, Dyson PJ (2010) In vitro ruthenation of human breast cancer suppressor gene1 (BRCA1) by the antimetastasis compound RAPTA-C and its analogue carboRAPTA-C. J Inorg Biochem 7:1290–1302

    Google Scholar 

  25. Casini A, Mastrobuoni G, Ang WH, Gabbiani C, Pieraccini G, Moneti G, Dyson PJ, Messori L (2007) ESI-MS characterisation of protein adducts of anticancer ruthenium(II)-arene PTA (RAPTA) Complexes. ChemMedChem 2:631–635

    CAS  Google Scholar 

  26. Hartinger CG, Casini A, Duhot C, Tsybin YO, Messori L, Dyson PJ (2008) Stability of an organometallic ruthenium–ubiquitin adduct in the presence of glutathione: relevance to antitumour activity. J Inorg Biochem 102:2136–2141

    CAS  Google Scholar 

  27. Casini A, Gabbiani C, Michelucci E, Pieraccini G, Moneti G, Dyson PJ, Messori L (2009) Exploring metallodrug-protein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound. J Biol Inorg Chem 14:761–770

    Google Scholar 

  28. Casini A, Gabbiani C, Sorrentino F, Rigobello MP, Bindoli A, Geldbach TJ, Marrone A, Re N, Hartinger CG, Dyson PJ, Messori L (2008) Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)-arene compounds. J Med Chem 51:6773–6781

    CAS  Google Scholar 

  29. Bergamo A, Masi A, Dyson PJ, Sava G (2008) Modulation of the metastatic progression of breast cancer with an organometallic ruthenium compound. Int J Oncol 33:1281–9

    CAS  Google Scholar 

  30. Katunuma N, Kominami E (1987) Distributions and localizations of lysosomal cysteine proteinases and cystains. Rev Physiol Biochem Pharmacol 108:1–20

    CAS  Google Scholar 

  31. Werb Z (1989) Proteinases and matrix degradation. In: Kelley WN et al (eds) Textbook of rheumatology. Saunders, Philadelphia, PA

    Google Scholar 

  32. Sloane BF, Moin K, Krepela E, Rhozhin J (1990) Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev 9:333–352

    CAS  Google Scholar 

  33. Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clin Chim Acta 291:113–35

    CAS  Google Scholar 

  34. Krueger S, Haeckel C, Buehling F, Roessner A (1999) Inhibitory effects of antisense cathepsin B cDNA transfection on invasion and motility in a human osteosarcoma cell line. Cancer Res 59:6010–6014

    CAS  Google Scholar 

  35. Fernandez P, Farre X, Nadal A, Fernandez E, Peiro N, Sloane BF, Sih G, Chapman HA, Campo E, Cardesa A (2001) Expression of cathepsins B and S in the progression of prostate carcinoma. Int J Cancer 95:51–55

    CAS  Google Scholar 

  36. Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Lakka SS, Kin Y, Fuller GN, Yung AW, Kyritsis AP, Dinh DH, Olivero WC, Gujrati M, Ali-Osman F, Rao JS (2001) Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20:3665–3673

    CAS  Google Scholar 

  37. Podgorski I, Sloane BF (2003) Cathepsin B and its role in cancer progression. Biochem Soc Symp 70:263–276

    CAS  Google Scholar 

  38. Frlan R, Gobec S (2006) Inhibitors of cathepsin B. Curr Med Chem 13:2309–2327

    CAS  Google Scholar 

  39. Chircorian A, Barrios AM (2004) Inhibition of lysosomal cysteine proteases by chrysotherapeutic compounds: a possible mechanism for the antiarthritic activity of Au(I). Bioorg Med Chem Lett 14:5113–5116

    CAS  Google Scholar 

  40. Mosi R, Baird IR, Cox J, Anastassov V, Cameron B, Skerlj RT, Fricker SP (2006) Rhenium inhibitors of cathepsin B (ReO(SYS)X (where Y = S, py; X = Cl, Br, SPhOMe-p)): synthesis and mechanism of inhibition. J Med Chem 49:5262–5272

    CAS  Google Scholar 

  41. Gunatilleke SS, de Oliveira CA, McCammon JA, Barrios AM (2008) Inhibition of cathepsin B by Au(I) complexes: a kinetic and computational study. J Biol Inorg Chem 13:555–561

    CAS  Google Scholar 

  42. Gunatilleke SS, Barrios AM (2006) Inhibition of lysosomal cysteine proteases by a series of Au(I) complexes: a detailed mechanistic investigation. J Med Chem 49:3933–3937

    CAS  Google Scholar 

  43. Gunatilleke SS, Barrios AM (2008) Tuning the Au(I)-mediated inhibition of cathepsin B through ligand substitutions. J Inorg Biochem 102:555–563

    CAS  Google Scholar 

  44. Caires AC (2007) Recent advances involving palladium (II) complexes for the cancer therapy. Anticancer Agents Med Chem 7:484–491

    CAS  Google Scholar 

  45. Meloun BM, Baudys M, Pohl J, Pavlik M, Kostka V (1988) Amino acid sequence of bovine spleen cathepsin B. J Biol Chem 263:9087–9093

    CAS  Google Scholar 

  46. Baudys M, Meloun B, Gan-Erdene T, Pohl J, Kostka V (1990) Disulfide bridges of bovine spleen cathepsin B. Biol Chem Hoppe Seyler 371:485–491

    CAS  Google Scholar 

  47. Yamamoto A, Tomoo K, Hara T, Murata M, Kitamura K, Ishida T (2000) J Biochem 127:635–643

    CAS  Google Scholar 

  48. Vock CA, Ang WH, Scolaro C, Phillips AD, Lagopoulos L, Juillerat-Jeanneret L, Sava G, Scopelliti R, Dyson PJ (2007) Development of ruthenium antitumor drugs that overcome multidrug resistance mechanisms. J Med Chem 50:2166–2175

    CAS  Google Scholar 

  49. Pongratz M, Schluga P, Jakupec MA, Arion VB, Hartinger CG, Allmaier G, Keppler BK (2004) Transferrin binding and transferrin-mediated cellular uptake of the ruthenium coordination compound KP1019, studied by means of AAS, ESI-MS and CD spectroscopy. J Anal At Spectrom 19:46–51

    CAS  Google Scholar 

  50. Ang WH, Daldini E, Juillerat-Jeanneret L, Dyson PJ (2007) Strategy to tether organometallic ruthenium-arene anticancer compounds to recombinant human serum albumin. Inorg Chem 46(22):9048–9050

    CAS  Google Scholar 

  51. Ang WA, De Luca A, Chapuis-Bernasconi C, Juillerat-Jeanneret L, Lo Bello M, Dyson PJ (2007) Organometallic ruthenium inhibitors of glutathione-S-transferase P1-1 as anticancer drugs. ChemMedChem 2:1799–1806

    CAS  Google Scholar 

  52. Ang WH, Parker LJ, De Luca A, Juillerat-Jeanneret L, Morton CJ, Lo Bello M, Parker MW, Dyson PJ (2009) Rational design of an organometallic glutathione transferase inhibitor. Angew Chem Int Ed Eng 148:3854–3857

    Google Scholar 

  53. Meyer DJ, Thomas M (1995) Characterization of rat spleen prostaglandin H D-isomerase as a sigma-class GSH transferase. Biochem J 311:739–742

    CAS  Google Scholar 

  54. Wilce MCJ, Parker MW (1994) Structure and function of glutathione S-transferases. Biochimica Et Biophys Acta 1205:1–18

    CAS  Google Scholar 

  55. Cesareo E, Parker LJ, Pedersen JZ, Nuccetelli M, Mazzetti AP, Pastore A, Federici G, Caccuri AM, Ricci G, Adams JJ, Parker MW, Lo Bello M (2005) Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. J Biol Chem 280:42172–42180

    CAS  Google Scholar 

  56. Lo HW, Ali-Osman F (2007) Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 7:367–374

    CAS  Google Scholar 

  57. Meijer L, Flajolet M, Greengard P (2004) Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25:471–480

    CAS  Google Scholar 

  58. Schmid WF, John RO, Arion VB, Jakupec MA, Keppler BK (2007) Highly antiproliferative ruthenium(II) and osmium(II) arene complexes with paullone-derived ligands. Organometallics 26:6643–6652

    CAS  Google Scholar 

  59. Cohen L, Schwartz S (1966) Modification of radiosensitivity by porphyrins. II. Transplanted rhabdomyosarcoma in mice. Cancer Res 26:1769–1773

    CAS  Google Scholar 

  60. Barrett AJ, Kennedy JC, Jones RA, Nadeau P, Pottier RH (1990) The effect of tissue and cellular pH on the selective biodistribution of porphyrin-type photochemotherapeutic agents: a volumetric titration study. J Photochem Photobiol B Biol 6:309–323

    CAS  Google Scholar 

  61. Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 73:1–28

    CAS  Google Scholar 

  62. Schmitt F, Govindaswamy P, Süss-Fink G, Ang WH, Dyson PJ, Juillerat-Jeanneret L, Therrien B (2008) Ruthenium porphyrin compounds for photodynamic therapy of cancer. J Med Chem 51:1811–1816

    CAS  Google Scholar 

  63. Berger I, Hanif M, Nazarov A, Hartinger CG, John R, Kuznetsov ML, Groessl M, Schmitt F, Zava O, Biba F, Arion VB, Galanski M, Jakupec MA, Juillerat-Jeanneret L, Dyson PJ, Keppler BK (2008) In vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands. Chem Eur J 14:9046–9057

    CAS  Google Scholar 

  64. Mendoza-Ferri MG, Hartinger CG, Eichinger RE, Stolyarova N, Severin K, Jakupec MA, Nazarov A, Keppler BK (2008) Influence of the spacer length on the in vitro anticancer activity of dinuclear ruthenium-arene compounds. Organometallics 27:2405–2407

    CAS  Google Scholar 

  65. Mendoza-Ferri MG, Hartinger CG, Mendoza MA, Groessl M, Egger A, Eichinger RE, Mangrum JB, Farrell NP, Maruszak M, Bednarski PJ, Klein F, Jakupec MA, Nazarov A, Severin K, Keppler BK (2009) Transferring the concept of multinuclearity to ruthenium complexes for improvement of anticancer activity. J Med Chem 52:916–925

    CAS  Google Scholar 

  66. Peacock AFA, Melchart M, Deeth RJ, Habtemariam A, Parsons S, Sadler PJ (2007) Osmium(II) and ruthenium(II) arene maltolato complexes: rapid hydrolysis and nucleobase binding. Chem Eur J 13:2601–2613

    CAS  Google Scholar 

  67. Auzias M, Therrien B, Süss-Fink G, Štěpnička P, Ang WH, Dyson PJ (2008) Ferrocenoyl pyridine arene ruthenium complexes with anticancer properties: synthesis, structure, electrochemistry, and cytotoxicity. Inorg Chem 47:578–583

    CAS  Google Scholar 

  68. Tiekink ER (2002) Gold derivatives for the treatment of cancer. Crit Rev Oncol Hematol 42:225–248

    Google Scholar 

  69. Parish RV, Howe BP, Wright JP, Mack J, Pritchard RG, Buckley RG, Elsome AM, Fricker SP (1996) Chemical and biological studies of dichloro(2-((dimethylamino)methyl)phenyl)gold(III). Inorg Chem 35:1659–1666

    CAS  Google Scholar 

  70. Buckley RG, Elsome AM, Fricker SP, Henderson GR, Theobald BR, Parish RV, Howe BP, Kelland LR (1996) Antitumor properties of some 2-[(dimethylamino)methyl]phenylgold(III) complexes. J Med Chem 39:5208–5214

    CAS  Google Scholar 

  71. Marcon G, Carotti S, Coronnello M, Messori L, Mini E, Orioli P, Mazzei T, Cinellu MA, Minghetti G (2002) Gold(III) complexes with bipyridyl ligands: solution chemistry, cytotoxicity, and DNA binding properties. J Med Chem 45:1672–1677

    CAS  Google Scholar 

  72. Abbate F, Orioli P, Bruni B, Marcon G, Messori L (2000) Crystal structure and solution chemistry of the cytotoxic complex 2, 2-dichloro(o-phenanthroline)gold(III) chloride. Inorg Chim Acta 311:1–5

    CAS  Google Scholar 

  73. Cinellu MA, Minghetti G, Pinna MV, Stoccoro S, Zucca A, Manassero M, Sansoni M (1998) μ-Oxo and alkoxo complexes of gold(III) with 6-alkyl-2,2’-bipyridines. Synthesis, characterization and X-ray structures. J Chem Soc Dalton Trans 1735-1741.

    Google Scholar 

  74. Coronnello M, Mini E, Caciagli B, Cinellu MA, Bindoli A, Gabbiani C, Messori L (2005) Mechanisms of cytotoxicity of selected organogold(III) compounds. J Med Chem 48:6761–6765

    CAS  Google Scholar 

  75. Sanna G, Pilo MI, Spano N, Minghetti G, Cinellu MA, Zucca A, Seeber R (2001) Electrochemical behaviour of cyclometallated gold(III) complexes. Evidence of transcyclometallation in the fate of electroreduced species. J Organomet Chem 622:47–53

    CAS  Google Scholar 

  76. Coronnello M, Marcon G, Carotti S, Caciagli B, Mini E, Mazzei T, Orioli P, Messori L (2000) Cytotoxicity, DNA damage, and cell cycle perturbations induced by two representative gold(III) complexes in human leukemic cells with different cisplatin sensitivity. Oncol Res 12:361–370

    CAS  Google Scholar 

  77. Coffer MT, Shaw CF 3rd, Hormann AL, Mirabelli CK, Crooke ST (1987) Thiol competition for Et3PAuS-albumin: a nonenzymatic mechanism for Et3PO formation. J Inorg Biochem 30:177–187

    CAS  Google Scholar 

  78. Rush GF, Smith PF, Hoke GD, Alberts DW, Snyder RM, Mirabelli CK (1987) The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. II. Triethylphosphine gold chloride-induced alterations in mitochondrial function. Toxicol Appl Pharmacol 90:391–400

    CAS  Google Scholar 

  79. Williams CH Jr (2000) Thioredoxin-thioredoxin reductase – a system that has come of age. Eur J Biochem 267:6101

    CAS  Google Scholar 

  80. Williams CH Jr (1992) In: Müller F (ed) Chemistry and biochemistry of flavoenzymes III. CRC, Boca Raton, FL

    Google Scholar 

  81. Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, Taketo MM (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178:179–185

    CAS  Google Scholar 

  82. Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Google Scholar 

  83. Nakamura H (2005) Thioredoxin and its related molecules: update 2005. Antioxid Redox Signal 7:823–828

    CAS  Google Scholar 

  84. Fritz-Wolf K, Urig S, Becker K (2007) The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J Mol Biol 370:116–127

    CAS  Google Scholar 

  85. Witte AB, Anestal K, Jerremalm E, Ehrsson H, Arner ES (2005) Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic Biol Med 39:696–703

    CAS  Google Scholar 

  86. Barnard PJ, Berners-Price SJ (2007) Targeting the mitochondrial cell death pathway with gold compounds Coord Chem Rev 251:1889–1902

    CAS  Google Scholar 

  87. Rigobello MP, Messori L, Marcon G, Agostina Cinellu M, Bragadin M, Folda A, Scutari G, Bindoli A (2004) Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J Inorg Biochem 98:1634–1641

    CAS  Google Scholar 

  88. Rigobello MP, Scutari G, Folda A, Bindoli A (2004) Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem Pharmacol 67:689–696

    CAS  Google Scholar 

  89. Omata Y, Folan M, Shaw M, Messer RL, Lockwood PE, Hobbs D, Bouillaguet S, Sano H, Lewis JB, Wataha JC (2006) Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol In Vitro 20:882–890

    CAS  Google Scholar 

  90. Rackham O, Nichols SJ, Leedman PJ, Berners-Price SJ, Filipovska A (2007) A gold(I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria. Biochem Pharmacol 74:992–1002

    CAS  Google Scholar 

  91. Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L (2009) Thioredoxinreductase: a target for gold compounds acting as potential anticancer drugs. Coord Chem Rev 253:1692–1707

    CAS  Google Scholar 

  92. Gromer S Arscott, LD WCH, Jr SRH, Becker K (1998) Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem 273:20096–20101

    CAS  Google Scholar 

  93. Engman L, McNaughton M, Gajewska M, Kumar S, Birmingham A, Powis G (2006) Thioredoxin reductase and cancer cell growth inhibition by organogold(III) compounds. Anticancer Drugs 17:539–544

    CAS  Google Scholar 

  94. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev 106:2224–2248

    CAS  Google Scholar 

  95. Kratz F, Hartmann M, Keppler BK, Messori L (1994) The binding properties of two antitumor ruthenium(III) complexes to apotransferrin. J Biol Chem 269:2581–2588

    CAS  Google Scholar 

  96. Kratz F, Keppler BK, Messori L, Smith C, Baker EN (1994) Protein-binding properties of two antitumour Ru(III) complexes to human apotransferrin and apolactoferrin. Met Based Drugs 1:169–173

    CAS  Google Scholar 

  97. Smith CA, Sutherland-Smith AJ, Keppler BK, Kratz F, Baker EN (1996) Binding of ruthenium(III) anti-tumor drugs to human lactoferrin probed by high resolution X-ray crystallographic structure analyses. J Biol Inorg Chem 1:424–431

    CAS  Google Scholar 

  98. Piccioli F, Sabatini S, Messori L, Orioli P, Hartinger CG, Keppler BK (2004) A comparative study of adduct formation between the anticancer ruthenium(III) compound HInd trans-[RuCl4(Ind)2] and serum proteins. J Inorg Biochem 98:1135–1142

    CAS  Google Scholar 

  99. Hartinger CG, Hann S, Koellensperger G, Sulyok M, Groessl M, Timerbaev AR, Rudnev AV, Stingeder G, Keppler BK (2005) Interactions of a novel ruthenium-based anticancer drug (KP1019 or FFC14a) with serum proteins–significance for the patient. Int J Clin Pharmacol Ther 43:583–585

    CAS  Google Scholar 

  100. Polec-Pawlak K, Abramski JK, Semenova O, Hartinger CG, Timerbaev AR, Keppler BK, Jarosz M (2006) Platinum group metallodrug-protein binding studies by capillary electrophoresis - inductively coupled plasma-mass spectrometry: a further insight into the reactivity of a novel antitumor ruthenium(III) complex toward human serum proteins. Electrophoresis 27:1128–1135

    CAS  Google Scholar 

  101. Kapitza S, Pongratz M, Jakupec MA, Heffeter P, Berger W, Lackinger L, Keppler BK, Marian B (2005) Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol 131:101–110

    CAS  Google Scholar 

  102. Groessl M, Reisner E, Hartinger CG, Eichinger R, Semenova O, Timerbaev AR, Jakupec MA, Arion VB, Keppler BK (2007) Structure-activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = imidazole, indazole, 1, 2, 4-triazole, 4-amino-1, 2, 4-triazole, and 1-methyl-1, 2, 4-triazole): aquation, redox properties, protein binding, and antiproliferative activity. J Med Chem 50:2185–2193

    CAS  Google Scholar 

  103. Chuang VTG, Kragh-Hansen U, Otagiri M (2002) Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res 19:569–577

    Google Scholar 

  104. Dosio F, Brusa P, Crosasso P, Arpicco S, Cattel L (1997) Preparation, characterization and properties in vitro and in vivo of a paclitaxel-albumin conjugate. J Control Release 47:293–304

    CAS  Google Scholar 

  105. Kratz F, Beyer U, Roth T, Schutte MT, Unold A, Fiebig HH, Unger C (1998) Albumin conjugates of the anticancer drug chlorambucil: synthesis, characterization, and in vitro efficacy. Arch Pharm (Weinheim) 331:47–53

    CAS  Google Scholar 

  106. Galanski M, Arion VB, Jakupec MA, Keppler BK (2003) Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des 9:2078–2089

    CAS  Google Scholar 

  107. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ (2005) Development of organometallic (organo-transition metal) pharmaceuticals. Appl Organomet Chem 19:1–10

    CAS  Google Scholar 

  108. Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry – from teaching paradigms to medicinal applications. Chem Soc Rev 38:391–401

    CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Swiss National Science Foundation, Swiss League Contre Le Cancer, Swiss State Secretariat for Education and Research, European Union, German Academic Exchange Programme, Austrian Science Fund and Eclosion are gratefully acknowledged. We would also like to thank our on-going collaborators, including Gianni Sava and Alberta Bergamo (Trieste), Bernhard Keppler (Vienna), Georg Süss-Fink and Bruno Therrien (Neuchâtel), and Luigi Messori (Florence), and fellow co-workers past and present whose names may be found in the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Dyson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casini, A., Hartinger, C.G., Nazarov, A.A., Dyson, P.J. (2010). Organometallic Antitumour Agents with Alternative Modes of Action. In: Jaouen, G., Metzler-Nolte, N. (eds) Medicinal Organometallic Chemistry. Topics in Organometallic Chemistry, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13185-1_3

Download citation

Publish with us

Policies and ethics