Skip to main content

Part of the book series: Evolutionary Learning and Optimization ((ALO,volume 3))

  • 734 Accesses

Abstract

This chapter reviews and expands our work on the relationship between linkage structure, that is how decision variables of a problem are linked with (dependent on) one another, and the performance of three basic types of genetic evolutionary algorithms (GEAs): hill climbing, genetic algorithm and bottom-up self-assembly (compositional). It explores how concepts and quantitative methods from the field of social/complex networks can be used to characterize or explain problem difficulty for GEAs. It also re-introduces two novel concepts – inter-level conflict and specificity – which view linkage structure from a level perspective. In general, the basic GEAs performed well on our test problems with linkage structures resembling those empirically observed in many real-world networks. This is a positive indication that the structure of real-world networks which evolved without any central organization such as biological networks is not only influenced by evolution and therefore exhibit non-random properties, but also influences its own evolution in the sense that certain structures are easier for evolutionary forces to adapt for survival. However, this necessarily implies the difficulty of certain other structures. Hence, the need to go beyond basic GEAs to what we call GEAs with “brains”, of which linkage-learning GEAs is one species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  2. Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM 22(4), 251–256 (1979)

    Article  MATH  Google Scholar 

  3. Davidor, Y.: Epistasis variance: a viewpoint of GA-hardness. In: Foundations of Genetic Algorithms, vol. 1, pp. 23–35. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  4. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (2006)

    Google Scholar 

  5. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In: Foundations of Genetic Algorithms, pp. 109–126. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  6. Gomes, C., Walsh, T.: Randomness and Structure. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    Google Scholar 

  7. Hogg, T.: Refining the phase transition in combinatorial search. Artificial Intelligence 81, 127–154 (1996)

    Article  MathSciNet  Google Scholar 

  8. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  9. Jones, T., Forrest, S.: Fitness Distance Correlations as a measure of problem difficulty for genetic algorithms. In: 6th International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  10. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD Dissertation, University of New Mexico, New Mexico, USA (1995)

    Google Scholar 

  11. Khor, S.: Rethinking the adaptive capability of accretive evolution on hierarchically consistent problems. In: IEEE Symposium on Artificial Life, pp. 409–416. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  12. Khor, S.: HIFF-II: A hierarchically decomposable problem with inter-level interdependency. In: IEEE Symposium on Artificial Life, pp. 274–281. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  13. Khor, S.: How different hierarchical relationships impact evolution. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 119–130. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Khor, S.: Problem Structure and Evolutionary Algorithm Difficulty. Ph.D. Dissertation, Concordia University, Montreal, Canada (2008)

    Google Scholar 

  15. Khor, S.: Where genetic drift, crossover and mutation play nice in a free-mixing single-population genetic algorithm. In: IEEE World Congress on Computational Intelligence, pp. 62–69. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  16. Khor, S.: Exploring the influence of problem structural characteristics on evo-lutionary algorithm performance. In: IEEE Congress on Evolutionary Computation, pp. 3345–3352 (2009)

    Google Scholar 

  17. Khor, S.: Effect of degree distribution on evolutionary search. In: Genetic and Evolutionary Computation Conference, pp. 1857–1858 (2009)

    Google Scholar 

  18. Khor, S.: Generating hierarchically modular networks via link switching. arXiv:0903.2598 (2009)

    Google Scholar 

  19. Khor, S.: Graph coloring and degree-degree correlation (2009) (Unpublished to date)

    Google Scholar 

  20. Larranga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A new tool for evolutionary computation. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  21. Lenaerts, T., Defaweux, A.: Solving hierarchically decomposable problems with the Evolutionary Transition Algorithm. In: Chiong, R., Dhakal, S. (eds.) Natural intelligence for scheduling, planning and packing problems. Springer, Berlin (2009)

    Google Scholar 

  22. Mahfoud, S.: Niching Methods for Genetic Algorithms. Ph.D. Dissertation, University of Illinois (1995)

    Google Scholar 

  23. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)

    Article  Google Scholar 

  24. Michod, R.E.: Cooperation and conflict in the evolution of complexity. In: Computational Synthesis: From basic building blocks to high level functionality: Papers from the AAAI Spring Symposium: 3–10. Technical Report SS-03-02. The AAAI Press, Menlo Park (2003)

    Google Scholar 

  25. Mitchell, M., Forrest, S., Holland, J.H.: The Royal Road for genetic algorithms: fitness landscapes and GA performance. In: 1st European Conference on Artificial Life, pp. 245–254. MIT Press, Cambridge (1992)

    Google Scholar 

  26. Naudts, B.: Measuring GA-Hardness. Ph.D. Dissertation, University of Antwerp, Belgium (1998)

    Google Scholar 

  27. Nedelcu, A.M., Michod, R.E.: Evolvability, modularity and individuality during the transition to multicellularity in Volvocalean green algae. In: Schlosser, G., Wagner, G. (eds.) Modularity in Development and Evolution. University of Chicago Press (2003)

    Google Scholar 

  28. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Newman, M.E.J.: Modularity and community structure in networks. arXiv:physics/0602124v1 (2006)

    Google Scholar 

  30. Oikonomou, P., Cluzel, P.: Effects of topology on network evolution. Nature Physics 2, 532–536 (2006)

    Article  Google Scholar 

  31. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a new generation of evolutionary algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  32. Simon, H.A.: The Sciences of the Artificial. The MIT Press, Cambridge (1969)

    Google Scholar 

  33. Van Hoyweghen, C., Naudts, B., Goldberg, D.E.: Spin-flip symmetry and synchronization. In: Evolutionary Computation, vol. 10(4), pp. 317–344. MIT Press, Cambridge (2002)

    Google Scholar 

  34. Walsh, T.: Search in a small world. In: International Joint Conference on Artificial Intelligence, pp. 1172–1177. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  35. Walsh, T.: Search on high degree graphs. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, pp. 266–274 (2001)

    Google Scholar 

  36. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 97–108. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  37. Watson, R.A.: Compositional Evolution: The Impact of sex, symbiosis and modularity on the gradualist framework of evolution. The MIT Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khor, S. (2010). Linkage Structure and Genetic Evolutionary Algorithms. In: Chen, Yp. (eds) Exploitation of Linkage Learning in Evolutionary Algorithms. Evolutionary Learning and Optimization, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12834-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12834-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12833-2

  • Online ISBN: 978-3-642-12834-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics