Skip to main content

Domain Theory and Measurement

  • Chapter
  • First Online:
New Structures for Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 813))

Abstract

Lecture notes on domain theory and measurement, driven by applications to physics, computer science and information theory, with a hint of provocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In principle, it is possible to measure the dcpo of Scott continuous maps \([D\rightarrow E]\). In practice, though, the question is how to do so simply. See [21, 43] for more.

  2. 2.

    Quantum channels are completely positive and convex linear, see [35] for more.

  3. 3.

    The results in the present paper work for any dimension \(n\geq 2\) [26].

  4. 4.

    Any such domain theorist should send a CV and some recent papers to keye.martin@nrl.navy.mil immediately.

References

  1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science III. Oxford University Press, Oxford (1994)

    Google Scholar 

  2. Alberti, P.M., Uhlmann, A.: Stochasticity and partial order: Doubly stochastic maps and unitary mixing. Dordrecht, Boston (1982)

    Google Scholar 

  3. Brent, R.P.: Algorithms for minimization without derivatives. Prentice-Hall, New Jersey (1973)

    Google Scholar 

  4. Chernous’ko, F.L.: An optimal algorithm for finding the roots of an approximately computed function. Zh. vychisl. Mat. i mat. Fiz. 8(4) 705–724 (1968), English translation

    MATH  Google Scholar 

  5. Coecke, B., Martin, K.: A partial order on classical and quantum states. Oxford University Computing Laboratory Research Report (August 2002)

    Google Scholar 

  6. Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor. Comput. Sci. 193, 53–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Falconer, K.: Fractal geometry. Wiley, Chichester (1990)

    Google Scholar 

  8. Gross, O., Johnson, S.M.: Sequential minimax search for a zero of a convex function. Math. Tables Other Aids Comput. 13(65), 44–51 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 78, 325 (1997)

    Article  ADS  Google Scholar 

  10. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  11. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Kowalski, M., Sikorski, K., Stenger, F.: Selected topics in approximation and computation. Oxford University Press, Oxford (1995)

    Google Scholar 

  13. Kraft, L.G.: A device for quantizing, grouping and coding amplitude modulated pulses. Thesis, M.S., Electrical Engineering Department, MIT (1949)

    Google Scholar 

  14. Marshall, A.W., Olkin, I.: Inequalities: Theory of majorization and its applications. Academic Press Inc., New York (1979)

    Google Scholar 

  15. Martin, K.: A foundation for computation. Ph.D. Thesis, Tulane University, Department of Mathematics (2000)

    Google Scholar 

  16. Martin, K.: The measurement process in domain theory. Lecture Notes in Computer Science, Vol. 1853. Springer, New York (2000)

    Google Scholar 

  17. Martin, K.: Unique fixed points in domain theory. Elect. Notes Theor. Comput. Sci. 45, 258–268 (2001)

    Article  Google Scholar 

  18. Martin, K.: A renee equation for algorithmic complexity. Lecture Notes in Computer Science, vol. 2215, pp. 201–218. Springer, New York (2001)

    Google Scholar 

  19. Martin, K.: Powerdomains and zero finding. Elect. Notes Theor. Comput. Sci. 59(3), 173–184 (2001)

    Article  Google Scholar 

  20. Martin, K.: The informatic derivative at a compact element. Lecture Notes in Computer Science, vol. 2303, pp. 103–148. Springer, New York (2002)

    Google Scholar 

  21. Martin, K.: B-sides. Oxford University Computing Lab, Research Report (2003)

    Google Scholar 

  22. Martin, K.: Epistemic motion in quantum searching. Oxford University Computing Laboratory, Research Report (2003)

    Google Scholar 

  23. Martin, K.: A continuous domain of classical states. Oxford University Computing Laboratory, Research Report (2003)

    Google Scholar 

  24. Martin, K.: Fractals and domain theory. Mathematical Structures in Computer Science, vol. 14(6), pp. 833–851. Cambridge University Press, Cambridge (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Martin, K., Ouaknine, J.: Informatic vs. classical differentiation on the real line. Elect. Notes Theor. Comput. Sci. 73, 133–140 (2004)

    Article  Google Scholar 

  26. Martin, K., Panangaden, P.: A domain of spacetime intervals in general relativity. Commun. Math. Phys. 267(3), 563–586 (November 2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Martin, K.: Compactness of the space of causal curves. J. Class. Quantum Grav. 23, 1241–1251 (2006)

    Article  ADS  MATH  Google Scholar 

  28. Martin, K.: >Entropy as a fixed point. Theoretical Computer Science (2006)

    Google Scholar 

  29. Martin, K.: Topology in information theory in topology. Theoretical Computer Science. To appear (2007)

    Google Scholar 

  30. Martin, K.: A domain theoretic model of qubit channels. To appear (2008)

    Google Scholar 

  31. Martin, K.: The maximum entropy state. Logical Methods in Computer Science. To appear

    Google Scholar 

  32. Martin, K., Panangaden, P.: In preparation (2008)

    Google Scholar 

  33. Mashburn, J.: A spectral order for infinite dimensional quantum spaces. Elect. Notes Theor. Comput. Sci. 173, 263–273 (2007)

    Article  Google Scholar 

  34. Muirhead, R.F.: Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proc. Edinburgh Math. Soc. 21, 144–157 (1903)

    Article  Google Scholar 

  35. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  36. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Penrose, R.: Techniques of differential topology in relativity. Soc. Ind. Appl. Math. (1972)

    Google Scholar 

  38. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing, New York (1988)

    MATH  Google Scholar 

  39. Schrödinger, E.: Proc. Cambridge Philosophical Soc. 32, 446 (1936)

    Article  ADS  Google Scholar 

  40. Scott, D.: Outline of a mathematical theory of computation. Technical Monograph PRG-2, Oxford University Computing Laboratory (November 1970)

    Google Scholar 

  41. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  42. Sorkin, R.: Spacetime and causal sets. In: D’Olivo, J. et al. (eds.) Relativity and Gravitation: Classical and Quantum. World Scientific, Singapore (1991)

    Google Scholar 

  43. Spreen, D. (2001) On some constructions in quantitative domain theory. Extended Abstract. http://www.informatik.uni-siegen.de/ spreen/

  44. Wald, R.M.: General relativity. The University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  45. Waszkiewicz, P.: Quantitative continuous domains. PhD Thesis, University of Birmingham (2002)

    Google Scholar 

  46. Yamaguti, M., Hata, M., Kigami, J.: Mathematics of fractals. Translations of Mathematical Monographs, vol. 167. American Math Society (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Martin, K. (2010). Domain Theory and Measurement. In: Coecke, B. (eds) New Structures for Physics. Lecture Notes in Physics, vol 813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12821-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12821-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12820-2

  • Online ISBN: 978-3-642-12821-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics