Skip to main content

Proof Nets as Formal Feynman Diagrams

  • Chapter
  • First Online:
New Structures for Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 813))

  • 3961 Accesses

Abstract

The introduction of linear logic and its associated proof theory has revolutionized many semantical investigations, for example, the search for fully-abstract models of PCF and the analysis of optimal reduction strategies for lambda calculi. In the present paper we show how proof nets, a graph-theoretic syntax for linear logic proofs, can be interpreted as operators in a simple calculus.

This calculus was inspired by Feynman diagrams in quantum field theory and is accordingly called the φ-calculus. The ingredients are formal integrals, formal power series, a derivative-like construct and analogues of the Dirac delta function.

Many of the manipulations of proof nets can be understood as manipulations of formulas reminiscent of a beginning calculus course. In particular, the “box” construct behaves like an exponential and the nesting of boxes phenomenon is the analogue of an exponentiated derivative formula. We show that the equations for the multiplicative-exponential fragment of linear logic hold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Actually a completely rigourous theory of path integration, due to Wiener, existed in the 1920s. It was, however, for statistical mechanics and worked with a gaussian measure rather than the kind of measure that Feynman needed.

  2. 2.

    The grammatically correct way to name this is a “Green function”, but it is too late to change common practice.

References

  1. Abramsky, S.: Computational interpretations of linear logic. Lecture at Category Theory Meeting in Montreal (1991)

    Google Scholar 

  2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, pp. 415–425. IEEE Computer Society (2004)

    Google Scholar 

  3. Asperti, A., Danos, V., Laneve, C., Regnier, L.: Paths in the *-calculus. In: Proceedings of the 9th Annual IEEE Symposium On Logic In Computer Science, Paris, France, July 1994

    Google Scholar 

  4. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. Symbolic J. Logic 59(2), 543–574 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Inf. Comput. 111(1), 53–119 (May 1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163, 409–470 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th Annual ACM Symposium on Principles of Programming Languages, pp. 81–94. ACM (1990)

    Google Scholar 

  8. Blute, R., Cockett, R., Seely, R.: Differential categories. Math. Struct. Comput. Sci. 16, 1049–1083 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blute, R.: Linear logic, coherence and dinaturality. Theor. Comput. Sci. 115, 3–41 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown, L.M. (ed.): Feynman’s thesis. World Scientific, 2005. Book version of R.P. Feynman’s PhD thesis from Princeton University (1942)

    Google Scholar 

  11. Cartier, P., DeWitt-Morette, C.: A new perspective on functional integration. J. Math. Phys. 36, 2237–2312 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Danos, V., Regnier, L.: Local and asynchronous *-reduction. In: Proceedings of the 8th IEEE Symposium on Logic in Computer Science, Montréal. IEEE Press, Canada, June 1993

    Google Scholar 

  13. Dyson, F.J.: The radiation theories of Tomanaga, Schwinger and Feynman. Phys. Rev. 75, 486–502 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci. 309, 1–41 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364, 166–195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feynman, R.P.: The space-time approach to quantum electrodynamics. Phys. Rev. 76, 769–789 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Feynman, R.P.: The theory of positrons. Phys. Rev. 76, 749–759 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Feynman, R.P.: Quantum Electrodynamics. Lecture Note and Preprint Series. Benjamin, W.A. Inc. (1962)

    Google Scholar 

  19. Fiore, M.P., Gambino, N., Hyland, M., Winskel, G.: The cartesian closed bicategory of generalised species of structures. J. London Math. Soc. 77, 203–220 (2007)

    Article  MathSciNet  Google Scholar 

  20. Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. McGraw Hill, New York (1965)

    MATH  Google Scholar 

  21. Fiore, M.P.: Adjoints and fock space in the context of profunctors. Talk given at the Cats, Kets and Cloisters Workshop, Oxford University, Oxford. (July 2006)

    Google Scholar 

  22. Fiore, M.P.: Differential structure in models of multiplicative biadditive intuitionistic linear logic. In: Typed Lambda Calculi and Applications, Number 4583 in Lecture Notes in Computer Science, pp. 163–177 (2007)

    Google Scholar 

  23. Girard, J.-Y.: Geometry of interaction I: Interpretation of system F. In: Ferro, R. et. al. (eds.) Proceedings Logic Colloquium 88, pp. 221–260. North-Holland, Amsterdam (1989)

    Google Scholar 

  24. Girard, J.-Y.: Geometry of interaction II: Deadlock free algorithms. In: Martin-Lof, P., Mints, G. (eds.) Proceedings of COLOG 88, Number 417 in Lecture Notes In Computer Science, pp. 76–93. Springer, New York 1989

    Google Scholar 

  25. Girard, J.-Y.: Geometry of interaction III: Accomodating the additives. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, Number 222 in London Mathematics Society Lecture Note Series, pp. 329–389. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  26. Girard, J.-Y.: Linear logic: Its syntax and semantics. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear logic, Number 222 in London Mathematics Society Lecture Note Series, pp. 1–42. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  27. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer, New York (1981)

    MATH  Google Scholar 

  28. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for pcf: I. models, observables and the full abstraction problem, II. dialogue games and innocent strategies, III. a fully abstract and universal game model. Inf. Comput. 163, 285–408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  30. Milner, R.: Fully abstract models of typed lambda-calculi. Theor. Comput. Sci. 4(1), 1–23 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  32. Nickau, H.: Hereditarily sequential functionals. In: Nerode, A., Matiyasevich, Yu.V. (eds.) In: Proceedings of the Symposium on Logical Foundations of Computer Science: Logic at St. Petersburg, volume 813 of Lecture Notes in Computer Science, pp. 253–264. Springer, New York (1994)

    Chapter  Google Scholar 

  33. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci. 5(3), 223–256 (1977)

    Article  MathSciNet  Google Scholar 

  34. Ramond, P.: Field Theory, A Modern Primer. Frontiers in Physics. Benjamin-Cummings (1981)

    Google Scholar 

  35. Panangaden, P., Blute, R., Seely, R.: Holomorphic functions as a model of exponential types in linear logic. In: Brookes, S. et al. (eds.) Proceedings of the 9th International Conference on Mathematical Foundations of Programming Semantics, volume 802 of Lecture Notes In Computer Science. Springer, New York (1993)

    Google Scholar 

  36. Schulman, L.S.: Techniques and applications of path integrals. Wiley, New York (1981)

    Google Scholar 

  37. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005), Number 170 in ENTCS, pp. 139–163 (2007)

    Google Scholar 

  38. Simon, B.: Functional Integration and Quantum Physics. AMS Chelsea, 2nd edn. AMS Chelsea Publishing, Providence (2005)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Samson Abramsky, Martin Hyland, Radha Jagadeesa and Mikhail Gromov for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Blute or P. Panangaden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Blute, R., Panangaden, P. (2010). Proof Nets as Formal Feynman Diagrams. In: Coecke, B. (eds) New Structures for Physics. Lecture Notes in Physics, vol 813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12821-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12821-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12820-2

  • Online ISBN: 978-3-642-12821-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics