Skip to main content

Hamiltonian Chaos with a Cold Atom in an Optical Lattice

  • Chapter
Hamiltonian Chaos Beyond the KAM Theory

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

We consider a basic model of the lossless interaction between a moving 2-level atom and a standing-wave single-mode laser field. Classical treatment of the translational atomic motion provides the semiclassical Hamilton-Schrödinger equations of motion which are a 5-dimensional nonlinear dynamical system with two integrals of motion. The atomic dynamics can be regular or chaotic (in the sense of exponential sensitivity to small variations in initial conditions and/or the system’s control parameters) in dependence on values of the control parameters, the atom-field detuning and recoil frequency. We develop a semiclassical theory of the chaotic atomic transport in terms of a random walk of the atomic electric dipole moment u which is one of the components of a Bloch vector. Based on a jump-like behavior of this variable for atoms crossing nodes of the standing laser wave, we construct a stochastic map that specifies the center-of-mass motion. We find the relations between the detuning, recoil frequency and the atomic energy, under which atoms may move in a rigid optical lattice in a chaotic way. We obtain the analytical conditions under which deterministic atomic transport has fractal properties and explain a hierarchical structure of the dynamical fractals. Quantum treatment of the atomic motion in a standing wave is studied in the dressed state picture where the atom moves in two optical potentials simultaneously. If the values of the detuning and a characteristic atomic frequency are of the same order, than there is a probability of nonadiabatic transitions of the atom upon crossing nodes of the standing wave. At the same condition exactly, we observe sudden changes (jumps) in the atomic dipole moment u when the atom crosses the nodes. Those jumps are accompanied by splitting of atomic wave packets at the nodes. Such a proliferation of wave packets at the nodes of a standing wave is a manifestation of classical atomic chaotic transport. In particular, the effect of simultaneous trapping of an atom in a well of one of the optical potential and its flight in the other potential is a quantum analogue of a chaotic classical walking of an atom. At large values of the detuning, the quantum evolution is shown to be adiabatic in accordance with a regular character of the classical atomic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argonov V.Yu. and Prants S.V., 2003, Fractals and chaotic scattering of atoms in the field of a stationary standing light wave, JETP, 96, 832–845. [Zh. Eksp. Teor. Fiz., 123, 946–961, (2003)].

    Article  ADS  Google Scholar 

  • Argonov V.Yu. and Prants S.V., 2006, Nonlinear coherent dynamics of an atom in an optical lattice, J. Russ. Laser Res., 27, 360–378.

    Article  Google Scholar 

  • Argonov V.Yu. and Prants S.V., 2007, Theory of chaotic atomic transport in an optical lattice, Phys. Rev. A, 75, art. 063428.

    Google Scholar 

  • Argonov V.Yu. and Prants S.V., 2008, Theory of dissipative chaotic atomic transport in an optical lattice, Phys. Rev. A, 78, art. 043413.

    Google Scholar 

  • Bardou F., Bouchaud J.P., Aspect A. and Cohen-Tannoudji C, 2002, Lévy Statistics and Laser Cooling, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Belobrov P.I., Zaslavskii G.M. and Tartakovskii G.Kh., 1976, Stochastic destruction of bound states in a system of atoms interacting with a radiation, Zh. Eksp. Teor. Fiz., 71, 1799–1812. [Sov. Phys. JETP, 44, 945–957, (1976)].

    Google Scholar 

  • Berman G.P. and Zaslavsky G.M., 1978, Condition of stochasticity in quantum non-linear systems, Physica A, 91, 450–460.

    Article  MathSciNet  ADS  Google Scholar 

  • Budyansky M.V, Uleysky M.Yu. and Prants S.V., 2004, Chaotic scattering, transport, and fractals in a simple hydrodynamic flow, J. Exper. Theor. Phys., 99, 1018–1027. [Zh. Eksp. Teor. Fiz., 126, 1167–1179, (2004)].

    Article  ADS  Google Scholar 

  • Casati G., Chirikov B.V., Izrailev RM. and Ford J., 1979, Stochastic behavior in classical and quantum hamiltonian Systems, Lecture Notes in Physics, Springer, Berlin.

    Google Scholar 

  • Chu S., Hollberg L., Bjorkholm J.E., Cable A. and Ashkin A., 1985, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure, Phys. Rev. Lett., 55, 48–51.

    Article  ADS  Google Scholar 

  • Dicke R.M., 1954, Coherence in spontaneous radiation, Phys. Rev., 93, 99–110.

    Article  ADS  MATH  Google Scholar 

  • Gaspard P., 1998, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Gould P.L., Ruff G.A. and Pritchard D.E., 1986, Diffraction of atoms by light: The near-resonant Kapitza-Dirac effect, Phys. Rev. Lett., 56, 827–830.

    Article  ADS  Google Scholar 

  • Graham R., Schlautmann M. and Zoller P., 1992, Dynamical localization of atomic-beam deflection by a modulated standing light wave, Phys. Rev. A, 45, R19–RR22.

    Article  ADS  Google Scholar 

  • Grynberg G. and Robilliard C, 2001, Cold atoms in dissipative optical lattices, Phys. Rep., 355, 335–451.

    Article  ADS  Google Scholar 

  • Gutzwiller M., 1990, Chaos in Classical and Quantum Mechanics, Springer, New York.

    MATH  Google Scholar 

  • Haake F., 1991, Quantum Signatures of Chaos, Springer, Berlin.

    MATH  Google Scholar 

  • Haken H., 1975, Analogy between higher instabilities in fluids and lasers, Phys. Lett. A, 53, 77–78.

    Article  ADS  Google Scholar 

  • Hensinger W.K. et al., 2001, Dynamical tunnelling of ultracold atoms, Nature, 412, 52–55.

    Article  ADS  Google Scholar 

  • Hensinger W.K. et al., 2003, Experimental tests of quantum nonlinear dynamics in atom optics, J. Opt. B: Quantum Semiclass. Opt., 5, R83–R120.

    Article  ADS  Google Scholar 

  • Jaynes E.T., Cummings E.W., 1963, Comparison of quantum and semiclassical theories with application to the beam maser, Proc. IEEE, 51, 89–109.

    Article  Google Scholar 

  • Kazantsev A.P., 1975, Recoil effect in a strong resonant field, Sov. Phys. JETP, 40, 825–831. [Zh. Eksp. Teor. Fiz., 67, 1660–1666, (1974)].

    ADS  Google Scholar 

  • Kazantsev A.P., Surdutovich G.I. and Yakovlev V.P., 1990, Mechanical Action of Light on Atoms, World Scientific, Singapore.

    Google Scholar 

  • Marksteiner S., Ellinger K. and Zoller P., 1996, Anomalous diffusion and Levy walks in optical lattices, Phys. Rev. A, 53, 3409–3430.

    Article  ADS  Google Scholar 

  • Moore F.L., Robinson J.C., Bharucha C, Williams P.E. and Raizen M.G., 1994, Observation of dynamical localization in atomic momentum transfer: a new testing ground for quantum chaos, Phys. Rev. Lett., 73, 2974–2977.

    Article  ADS  Google Scholar 

  • Morsch O. and Oberthaler M., 2006, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys., 78, 179–215.

    Article  ADS  Google Scholar 

  • Moskowitz P.E., Gould P.L., Atlas S.R. and Pritchard D.E., 1983, Diffraction of an atomic beam by standing-wave radiation, Phys. Rev. Lett., 51, 370–373.

    Article  ADS  Google Scholar 

  • Prants S.V., 2002, Fractals and flights of atoms in cavities, JETP Letters, 75, 651–658. [Pis’ma ZhETF, 75, 777–785 (2002)].

    Article  ADS  Google Scholar 

  • Prants S.V., Edelman M. and Zaslavsky G.M., 2002, Chaos and flights in the atom-photon interaction in cavity QED, Phys. Rev. E, 66, art. 046222.

    Google Scholar 

  • Prants S.V., Uleysky M.Yu. and Argonov V.Yu., 2006, Entanglement, fidelity, and quantum-classical correlations with an atom moving in a quantized cavity field, Phys. Rev. A, 73, 023807.

    Article  ADS  Google Scholar 

  • Prants S.V. and Kon’kov L.E., 2001, Chaotic motion of atom in the coherent field of a standing light wave, JETP Lett., 73, 180–183. [Pis’ma ZhETF, 73, 200, (2001)].

    Article  ADS  Google Scholar 

  • Prants S.V. and Sirotkin V.Yu., 2001, Effects of the Rabi oscillations on the atomic motion in a standing-wave cavity, Phys. Rev. A, 64, art. 033412.

    Google Scholar 

  • Prants S.V. and Uleysky M.Yu., 2003, Atomic fractals in cavity quantum electrodynamics, Phys. Lett. A, 309, 357–362.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Reichl L.E., 1992, The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, Springer, New York.

    MATH  Google Scholar 

  • Robinson J.C., Bharucha C, Moore F.L., Jahnke R., Georgakis G.A., Niu Q., Raizen M.G. and Bala Sundaram, 1995, Atom optics realization of the quantum δ-kicked rotor, Phys. Rev. Lett, 74, 4598–4601.

    Article  Google Scholar 

  • Sleator T., Pfau T., Balykin V, Carnal O. and Mlynek J., 1992, Experimental demonstration of the optical Stern-Gerlach effect, Phys. Rev. Lett., 68, 1996–1999.

    Article  ADS  Google Scholar 

  • Steck D.A. et al., 2001, Observation of chaos-assisted tunneling between islands of stability, Science, 293, 274–278.

    Article  ADS  Google Scholar 

  • Stöckmann H.-J., 1999, Quantum Chaos: An Introduction, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Zaslavsky G.M., 1981, Stochasticity in quantum systems, Phys. Rep., 80, 157–250.

    Article  MathSciNet  ADS  Google Scholar 

  • Zaslavsky G.M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prants, S.V. (2010). Hamiltonian Chaos with a Cold Atom in an Optical Lattice. In: Luo, A.C.J., Afraimovich, V. (eds) Hamiltonian Chaos Beyond the KAM Theory. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12718-2_4

Download citation

Publish with us

Policies and ethics