Skip to main content

Communication Efficient Perfectly Secure VSS and MPC in Asynchronous Networks with Optimal Resilience

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2010 (AFRICACRYPT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6055))

Included in the following conference series:

Abstract

Verifiable Secret Sharing (VSS) is a fundamental primitive used in many distributed cryptographic tasks, such as Multiparty Computation (MPC) and Byzantine Agreement (BA). It is a two phase (sharing, reconstruction) protocol. The VSS and MPC protocols are carried out among n parties, where t out of n parties can be under the influence of a Byzantine (active) adversary, having unbounded computing power. It is well known that protocols for perfectly secure VSS and perfectly secure MPC exist in an asynchronous network iff n ≥ 4t + 1. Hence, we call any perfectly secure VSS (MPC) protocol designed over an asynchronous network with n = 4t + 1 as optimally resilient VSS (MPC) protocol.

A secret is d-shared among the parties if there exists a random degree-d polynomial whose constant term is the secret and each honest party possesses a distinct point on the degree-d polynomial. Typically VSS is used as a primary tool to generate t-sharing of secret(s). In this paper, we present an optimally resilient, perfectly secure Asynchronous VSS (AVSS) protocol that can generate d-sharing of a secret for any d, where t ≤ d ≤ 2t. This is the first optimally resilient, perfectly secure AVSS of its kind in the literature. Specifically, our AVSS can generate d-sharing of ℓ ≥ 1 secrets from \({\mathbb F}\) concurrently, with a communication cost of \({\cal O}(\ell n^2 \log{|{\mathbb F}|})\) bits, where \({\mathbb F}\) is a finite field. Communication complexity wise, the best known optimally resilient, perfectly secure AVSS is reported in [2]. The protocol of [2] can generate t-sharing of ℓ secrets concurrently, with the same communication complexity as our AVSS. However, the AVSS of [2] and [4] (the only known optimally resilient perfectly secure AVSS, other than [2]) does not generate d-sharing, for any d > t.

Interpreting in a different way, we may also say that our AVSS shares ℓ(d + 1 − t) secrets simultaneously with a communication cost of \({\cal O}(\ell n^2 \log{|{\mathbb F}|})\) bits. Putting d = 2t (the maximum value of d), we notice that the amortized cost of sharing a single secret using our AVSS is only \({\cal O}(n \log{|{\mathbb F}|})\) bits. This is a clear improvement over the AVSS of [2] whose amortized cost of sharing a single secret is \({\cal O}(n^2 \log{|{\mathbb F}|})\) bits.

As an interesting application of our AVSS, we propose a new optimally resilient, perfectly secure Asynchronous Multiparty Computation (AMPC) protocol that communicates \({\cal O}(n^2 \log|{\mathbb F}|)\) bits per multiplication gate. The best known optimally resilient perfectly secure AMPC is due to [2], which communicates \({\cal O}(n^3 \log|{\mathbb F}|)\) bits per multiplication gate. Thus our AMPC improves the communication complexity of the best known AMPC of [2] by a factor of Ω(n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Beerliová-Trubíniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–392. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61 (1993)

    Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

    Google Scholar 

  6. BenOr, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: PODC, pp. 183–192 (1994)

    Google Scholar 

  7. Bracha, G.: An asynchronous \(\lfloor (n - 1) / 3 \rfloor\)-resilient consensus protocol. In: PODC, pp. 154–162 (1984)

    Google Scholar 

  8. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel (1995)

    Google Scholar 

  9. Canetti, R., Rabin, T.: Fast asynchronous Byzantine Agreement with optimal resilience. In: STOC, pp. 42–51 (1993)

    Google Scholar 

  10. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)

    Google Scholar 

  11. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Franklin, M.K., Yung, M.: Communication complexity of secure computation. In: STOC, pp. 699–710 (1992)

    Google Scholar 

  13. Feldman, P., Micali, S.: An optimal algorithm for synchronous Byzantine Agreemet. In: STOC, pp. 639–648 (1988)

    Google Scholar 

  14. Fitzi, M., Garay, J., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-optimal and efficient verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: STOC, pp. 580–589 (2001)

    Google Scholar 

  16. Katz, J., Koo, C., Kumaresan, R.: Improving the round complexity of VSS in point-to-point networks. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 499–510. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Patra, A., Choudhary, A., Rabin, T., Pandu Rangan, C.: The round complexity of verifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 487–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient asynchronous multiparty computation with optimal resilience. Cryptology ePrint Archive, Report 2008/425 (2008)

    Google Scholar 

  19. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient asynchronous Byzantine Agreement with optimal resilience. In: PODC, pp. 92–101 (2009)

    Google Scholar 

  20. Patra, A., Choudhary, A., Pandu Rangan, C.: Unconditionally secure asynchronous multiparty computation with quadratic communication per multiplication gate. Cryptology ePrint Archive, Report 2009/087 (2009)

    Google Scholar 

  21. Patra, A., Choudhary, A., Pandu Rangan, C.: Communication Efficient Perfectly Secure VSS and MPC in Asynchronous Networks with Optimal Resilience Cryptology ePrint Archive, Report 2010/007 (2010)

    Google Scholar 

  22. Prabhu, B., Srinathan, K., Pandu Rangan, C.: Trading players for efficiency in unconditional multiparty computation. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 342–353. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC, pp. 73–85 (1989)

    Google Scholar 

  24. Srinathan, K., Pandu Rangan, C.: Efficient asynchronous secure multiparty distributed computation. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 117–129. Springer, Heidelberg (2000)

    Google Scholar 

  25. Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patra, A., Choudhury, A., Rangan, C.P. (2010). Communication Efficient Perfectly Secure VSS and MPC in Asynchronous Networks with Optimal Resilience. In: Bernstein, D.J., Lange, T. (eds) Progress in Cryptology – AFRICACRYPT 2010. AFRICACRYPT 2010. Lecture Notes in Computer Science, vol 6055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12678-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12678-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12677-2

  • Online ISBN: 978-3-642-12678-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics