Skip to main content

Integrated Representation of (Potentially Unbounded) 2D and 3D Spatial Objects for Rigorously Correct Query and Manipulation

  • Chapter
  • First Online:
Advances in 3D Geo-Information Sciences

Abstract

In the search for a rigorous closed algebra for the query and manipulation of the representations of spatial objects, most research, apart from a few exceptions, has focused on defining and refining the mathematical model, whereby the representation is assumed to be defined by real-numbered coordinates in 2D or 3D space. The realization of this theory in the finite precision of a computer implementation is problematic, and frequently leads to unexpected and unwanted results. This paper explores a restricted, but useful representation, which supports a rigorous unsorted logic within the finite precision arithmetic of computer hardware: the regular polytope. This logic allows the derivation of a rich set of computable predicates and spatial functions. It is shown that this approach is readily implementable and is applicable to Cadastral data (with the growing need for integrated 2D and 3D representations and potentially unbounded representations of ownership volume parcels into outer space), and has the potential to support more general spatial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angel, E. (2006). Interactive Computer Graphics: A Top-Down Approach Using OpenGL. Boston, MA, Addison Wesley.

    Google Scholar 

  • Bulbul, R. and A. U. Frank (2009). BigIntegers for GIS: Testing the Viability of Arbitrary Precision Arithmetic for GIS Geometry. 12th AGILE Conference, Hannover, Germany.

    Google Scholar 

  • Cohn, A. G. and A. C. Varzi (1999). Modes of Connection. Spatial Information Theory. Proceedings of the Fourth International Conference. Berlin and Heidelberg, Springer-Verlag.

    Google Scholar 

  • Courant, R. and H. Robbins (1996). The Denumerability of the Rational Number and the Non-Denumerability of the Continuum. What Is Mathematics?: An Elementary Approach to Ideas and Methods. Oxford, Oxford University Press: 79–83.

    Google Scholar 

  • Coxeter, H. S. M. (1974). Projective Geometry. New York, Springer-Verlag.

    Google Scholar 

  • Düntsch, I. and M. Winter (2004). Algebraization and representation of mereotopological structures. Relational Methods in Computer Science 1: 161–180.

    Google Scholar 

  • Egenhofer, M. J. (1994). Deriving the composition of binary topological relations. Journal of Visual Languages and Computing 5(2): 133–149.

    Article  Google Scholar 

  • Franklin, W. R. (1984). Cartographic errors symptomatic of underlying algebra problems. International Symposium on Spatial Data Handling, Zurich, Switzerland: 190–208.

    Google Scholar 

  • Gaal, S. A. (1964). Point Set Topology. New York, Academic Press.

    Google Scholar 

  • Güting, R. H. and M. Schneider (1993). Realms: a foundation for spatial data types in database systems. 3rd International Symposium on Large Spatial Databases (SSD), Singapore.

    Google Scholar 

  • ISO-TC211 (2003, 2001-11-21). Geographic Information – Spatial Schema. ISO19107, from http://www.iso.org/iso/catalogue_detail.htm?csnumber=26012

  • ISO-TC211 (2009). Geographic Information – Land Administration Domain Model (LADM). ISO/CD 19152.

    Google Scholar 

  • Lema, J. A. C. and R. H. Güting (2002). Dual grid: a new approach for robust spatial algebra implementation. GeoInformatica 6(1): 57–76.

    Article  Google Scholar 

  • Lemon, O. and I. Pratt (1998). Complete logics for QSR [qualitative spatial reasoning]: a guide to plane mereotopology. Journal of Visual Languages and Computing 9: 5–21.

    Article  Google Scholar 

  • Mehlhorn, K. and S. Näher (1999). LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge, UK, Cambridge University Press.

    Google Scholar 

  • Naimpally, S. A. and B. D. Warrack (1970). Proximity Spaces. Cambridge, Cambridge University Press.

    Google Scholar 

  • Nunes, J. (1991). Geographic Space as a Set of Concrete Geographic Entities. Cognitive and Linguistic Aspects of Geographic Space. D. M. Mark and A. Frank (eds.). Dordrecht, Kluwer Academic: 9–33.

    Google Scholar 

  • OGC (1999, 5 May 1999). Open GIS Simple features Specification for SQL. Revision 1.1. Retrieved 15 Oct 2003, from http://www.opengis.org/specs/

  • Randell, D. A., et al. (1992). A Spatial Logic Based on Regions and Connection. 3rd International Conference on Principles of Knowledge Representation and Reasoning. Cambridge, MA, Morgan Kaufmann.

    Google Scholar 

  • Roy, A. J. and J. G. Stell (2002). A Qualitative Account of Discrete Space. GIScience 2002, Boulder, CO, USA.

    Google Scholar 

  • Stoter, J. (2004). 3D Cadastre. Delft, Delft University of Technology.

    Google Scholar 

  • Stoter, J. and P. van Oosterom (2006). 3D Cadastre in an International Context. Boca Raton, FL, Taylor & Francis.

    Book  Google Scholar 

  • Tarbit, S. and R. J. Thompson (2006). Future Trends for Modern DCDB’s, a new Vision for an Existing Infrastructure. Combined 5th Trans Tasman Survey Conference and 2nd Queensland Spatial Industry Conference, Cairns, Queensland, Australia.

    Google Scholar 

  • Thompson, R. J. (2005a). 3D Framework for Robust Digital Spatial Models. Large-Scale 3D Data Integration. S. Zlatanova and D. Prosperi. Boca Raton, FL, Taylor & Francis.

    Google Scholar 

  • Thompson, R. J. (2005b). Proofs of Assertions in the Investigation of the Regular Polytope. Retrieved 2 Feb 2007, from http://www.gdmc.nl/publications/reports/GISt41.pdf

  • Thompson, R. J. (2007). Towards a Rigorous Logic for Spatial Data Representation. PhD thesis, Delft University of Technology, Delft, The Netherlands, Netherlands Geodetic Commission.

    Google Scholar 

  • Thompson, R. J. (2009). Use of Finite Arithmetic in 3D Spatial Databases. 3D GeoInfo 08, Seoul, Springer.

    Google Scholar 

  • Thompson, R. J. and P. van Oosterom (2006). Implementation Issues in the Storage of Spatial Data As Regular Polytopes. UDMS 06, Aalborg.

    Google Scholar 

  • Thompson, R. J. and P. van Oosterom (2009). Connectivity in the Regular Polytope Representation. GeoInformatica, October: 24.

    Google Scholar 

  • van Oosterom, P., et al. (2004). About Invalid, Valid and Clean Polygons. Developments in Spatial Data Handling. P. F. Fisher (ed.). New York, Springer-Verlag: 1–16.

    Google Scholar 

  • Verbree, E., et al. (2005). Overlay of 3D features within a tetrahedral mesh: A complex algorithm made simple. Auto Carto 2005, Las Vegas, NV.

    Google Scholar 

  • Weisstein, E. W. (1999). Boolean Algebra. MathWorld – A Wolfram Web Resource. Retrieved 20 Jan 2007, from http://mathworld.wolfram.com/BooleanAlgebra.html

  • Zlatanova, S. (2000). 3D GIS for Urban Development. Graz, Graz University of Technology.

    Google Scholar 

  • Zlatanova, S., et al. (2002). Topology for 3D spatial objects. International Symposium and Exhibition on Geoinformation, Kuala Lumpur.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney James Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thompson, R.J., van Oosterom, P. (2011). Integrated Representation of (Potentially Unbounded) 2D and 3D Spatial Objects for Rigorously Correct Query and Manipulation. In: Kolbe, T., König, G., Nagel, C. (eds) Advances in 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12670-3_11

Download citation

Publish with us

Policies and ethics