Skip to main content

Enzymatic Degradation of Poly-Gamma-Glutamic Acid

  • Chapter
  • First Online:
Amino-Acid Homopolymers Occurring in Nature

Part of the book series: Microbiology Monographs ((MICROMONO,volume 15))

Abstract

Enzymes that degrade poly-γ-glutamate (γ-PGA) are found mainly in bacteria. γ-PGA is a polymer of glutamic acid linked by γ-peptide bond synthesized by a membrane protein complex. It surrounds bacterial cells, and functions as a physical barrier against bacteriophages or phagocytosis and as an extracellular nutrient reservoir. γ-PGA-degrading enzymes of Bacillus subtilis, B. anthracis, Flavobacterium polyglutamicum, Myrothecium sp., and bacteriophages act differently on γ-PGA and they are essential to facilitate or to antagonize such physiological functions of γ-PGA. γ-PGA contains D-isomer of glutamic acid. γ-PGA-degrading enzymes recognize not only the γ-peptide bond but also the stereochemistry of the polymer. Among the γ-PGA-degrading enzymes, B. anthracis CapD and bacteriophage PghP have been examined in their tertiary structure. Catalytic mechanism and the recognition of stereochemistry of the substrate are discussed based on their 3D structures. Other γ-PGA-degrading enzymes are classified based on the mode of action and substrate specificities. Their catalytic and physiological functions are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Ito Y, Ohmachi T, Asada Y (1997) Purification and properties of two isozymes of γ-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci Biotechnol Biochem 61:1621–1625

    CAS  Google Scholar 

  • Ackermann H-W, Azizbekyan RR, Bernier RL, de Barje H, Saindouk S, Valéro J-R, Yu M-X (1995) Phage typing of Bacillus subtilis and B. thuringensis. Res Microbiol 146:643–657

    CAS  Google Scholar 

  • Akagi T, Higashi M, Kaneko T, Kida T, Akashi M (2005) In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid). Macromol Biosci 5:598–602

    CAS  Google Scholar 

  • Akagi T, Higashi M, Kaneko T, Kida T, Akashi M (2006) Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers. Biomacromolecules 7:297–303

    CAS  Google Scholar 

  • Ashiuchi M, Tani K, Soda K, Misono H (1998) Properties of glutamate racemase from Bacillus subtilis IFO3336 producing poly-gamma-glutamate. J Biochem 123:1156–1163

    CAS  Google Scholar 

  • Ashiuchi M, Soda K, Misono H (1999) A poly-γ-glutamate synthetic system of Bacillus subtilis IFO3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun 263:6–12

    CAS  Google Scholar 

  • Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T, Misono H (2001) Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence. Appl Microbiol Biotechnol 57:764–769

    CAS  Google Scholar 

  • Ashiuchi M, Nakamura H, Yamamoto M, Misono H (2006) Novel poly-gamma-glutamate-processing enzyme catalyzing gamma-glutamyl DD-amidohydrolysis. J Biosci Bioeng 102:60–65

    CAS  Google Scholar 

  • Birrer GA, Cromwick A-M, Gross RA (1994) γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol 16:265–275

    CAS  Google Scholar 

  • Buescher JM, Margaritis A (2007) Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 27:1–19

    CAS  Google Scholar 

  • Cachat E, Barker M, Read TD, Priest FG (2008) A Bacillus thuringiensis strain producing a polyglutamate capsule resembling that of Bacillus anthracis. FEMS Microbiol Lett 285:220–226

    CAS  Google Scholar 

  • Candela T, Fouet A (2005) Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 57:717–726

    CAS  Google Scholar 

  • Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098

    CAS  Google Scholar 

  • Candela T, Mock M, Fouet A (2005) CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J Bacteriol 187:7765–7772

    CAS  Google Scholar 

  • Candela T, Moya M, Haustant M, Fouet A (2009) Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol 55:627–632

    CAS  Google Scholar 

  • Cappalonga AM, Alexander RS, Christianson DW (1992) Structural comparison of sulfoximine and sulfonamide inhibitors in their complexes with zinc enzymes. J Biol Chem 267:19192–19197

    CAS  Google Scholar 

  • Cescutti P, Paoletti S (1994) On the specificity of a bacteriophage-borne endoglycanase for the native capsular polysaccharide produced by Klebsiella pneumoniae SK1 and its derived polymers. Biochem Biophys Res Commun 198:1128–1134

    CAS  Google Scholar 

  • Chunhachart O, Hanayama T, Hidesaki M, Tanimoto H, Tahara Y (2006) Structure of the hydrolyzed product (F-2) released from gamma-polyglutamic acid by gamma-glutamyl hydrolase YwtD of Bacillus subtilis. Biosci Biotechnol Biochem 70:2289–2291

    CAS  Google Scholar 

  • de Ilarduya AM, Ittobane N, Bermudez M, Alla A, El Idrissi M, Munoz-Guerra S (2002) Poly(alpha-alkyl gamma-glutamate)s of microbial origin. 2. On the microstructure and crystal structure poly(alpha-ethyl gamma-glutamate)s. Biomacromolecules 3:1078–1086

    Google Scholar 

  • Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244

    CAS  Google Scholar 

  • Fouet A, Mock M (2006) Regulatory networks for virulence and persistence of Bacillus anthracis. Curr Opin Microbiol 9:160–166

    CAS  Google Scholar 

  • Fujimoto Z, Shiga I, Itoh Y, Kimura K (2009) Crystallization and preliminary crystallographic analysis of poly-γ-glutamate hydrolase from bacteriophage ΦNIT1. Acta Crystallogr F65:913–916

    CAS  Google Scholar 

  • Hara T (2001) Biodegradable food container made of natto resin. Shokuhin Kougyou 44:43–49 (In Japanese)

    CAS  Google Scholar 

  • He LM, Neu MP, Vanderberg LA (2000) Bacillus licheniformis γ-glutamyl exopolymer: physicochemical characterization and U(VI) interaction. Environ Sci Technol 34:1694–1701

    CAS  Google Scholar 

  • Hongo M, Yoshimoto A (1970) Bacteriophage of Bacillus natto. part III. Action of phage-induced γ-polyglutamic acid depolymerase on γ-polyglutamic acid and the enzymatic hydrolyzates. Agric Biol Chem 34:1055–1063

    Google Scholar 

  • Kada S, Nanamiya H, Kawamura F, Horinouchi S (2004) Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-gamma-glutamate production in gamma-PGA-producing Bacillus subtilis. FEMS Microbiol Lett 236:13–20

    CAS  Google Scholar 

  • Kilshtain-Vardi A, Glick M, Greenblatt HM, Goldblum A, Shoham G (2003) Refined structure of bovine carboxypeptidase A at 1.25 Å resolution. Acta Crystallogr D59:323–333

    CAS  Google Scholar 

  • Kimura K, Itoh Y (2003) Characterization of poly-γ-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-γ-glutamate. Appl Environ Microbiol 69:2491–2497

    CAS  Google Scholar 

  • Kimura K, Tran L-S P, Itoh Y (2004a) Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis. Microbiology 150:2911–2920

    CAS  Google Scholar 

  • Kimura K, Tran L-S P, Uchida I, Itoh Y (2004b) Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology 150:4115–4123

    CAS  Google Scholar 

  • Kimura K, Tran L-S P, Do TH, Itoh Y (2009) Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Biosci Biotechnol Biochem 73:1149–1155

    CAS  Google Scholar 

  • King EC, Blacker AJ, Bugg TDH (2000) Enzymatic breakdown of poly-gamma-D-glutamic acid in Bacillus licheniformis: identification of a polyglutamyl gamma-hydrolase enzyme. Biomacromolecules 1:75–83

    CAS  Google Scholar 

  • Kocianova S, Vuong C, Yao YF, Voyich JM, Fischer ER, DeLeo FR, Otto M (2005) Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115:688–694

    CAS  Google Scholar 

  • Kunioka M, Goto A (1994) Biosyntheis of poly(gamma-glutamic acid) from L-glutamic acid, ciric-acid, and ammonium-sulfate in Bacillus subtilis IF03335. Appl Microbiol Biotechnol 40:867–872

    CAS  Google Scholar 

  • Kwiatkowski B, Boschek B, Thiele H, Stirm S (1982) Endo-N-acetylneuraminidase associated with bacteriophage particles. J Virol 43:697–704

    CAS  Google Scholar 

  • Lazazzera BA (2000) Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3:177–182

    CAS  Google Scholar 

  • Lipscomb WN, Reeke GN, Hartsuck JA, Quiocho FA, Bethge PH (1970) The structure of carboxypeptidase A. 8. Atomic interpretation at 0.2 nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. Philos Trans Roy Soc Lond 257:177–214

    CAS  Google Scholar 

  • Makino S, Sasakawa C, Uchida I, Terakado N, Yoshikawa M (1988) Cloning and CO2-dependent expression of the genetic region for encapsulation from Bacillus anthracis. Mol Microbiol 2:371–376

    CAS  Google Scholar 

  • Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M (1989) Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol 171:722–730

    CAS  Google Scholar 

  • Matsui O, Fujita KI, Nakayama H, Taniguchi M, Tarui Y, Hirasawa E, Usuki Y, Tanaka T (2008) Isolation of an Acremonium sp. capable of liquefying cross-linked poly(gamma-glutamic acid) hydrogels and the fungal enzyme involved in the disruption of gamma-ray irradiation-mediated cross-linking. J Biosci Bioeng 105:422–424

    CAS  Google Scholar 

  • Meerak J, Yukphan P, Miyashita M, Sato H, Nakagawa Y, Tahara Y (2008) Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from a fermented locust bean product manufactured in West Africa. J Gen Appl Microbiol 54:159–166

    CAS  Google Scholar 

  • Merritt EA, Bacon DJ (1997) Raster3D photorealistic molecular graphics. Methods Enzymol 277:505–524

    CAS  Google Scholar 

  • Minami H, Suzuki H, Kumagai H (2004) γ-Glutamyltranspeptidase, but not YwrD, is important in utilization of extracellular glutathione as a sulfur source in Bacillus subtilis. J Bacteriol 186:1213–1214

    CAS  Google Scholar 

  • Moretto A, Formaggio F, Kaptein B, Broxterman QB, Wu L, Keiderling TA, Toniolo C (2008) First homo-peptides undergoing a reversible 3(10)-helix to alpha-helix transition: critical main-chain length. Biopolymers 90:567–574

    CAS  Google Scholar 

  • Murray EJ, Kiley TB, Stanley-Wall NR (2009) A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology 155:1–8

    CAS  Google Scholar 

  • Nagai T, Yamasaki F (2009) Bacillus subtilis (natto) bacteriophages isolated in Japan. Food Sci Technol Res 15:293–298

    CAS  Google Scholar 

  • Nagai T, Koguchi K, Itoh Y (1997) Chemical analysis of poly-γ-glutamic acid produced by plasmid-free Bacillus subtilis (natto): evidence that plasmids are not involved in poly-γ-glutamic acid production. J Gen Appl Microbiol 43:139–143

    CAS  Google Scholar 

  • Obst M, Steinbüchel A (2004) Microbial degradation of poly(amino acid)s. Biomacromolecules 5:1166–1176

    CAS  Google Scholar 

  • Ogawa Y, Hosoyama H, Hamano M, Motai H (1991) Purification and properties of γ-glutamyltranspeptidase from Bacillus subtilis (natto). Agric Biol Chem 55:2971–2977

    CAS  Google Scholar 

  • Ogura M, Yamaguchi H, Yoshida K, Fujita Y, Tanaka T (2001) DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucleic Acids Res 29:3804–3813

    CAS  Google Scholar 

  • Ogura M, Shimane K, Asai K, Ogasawara N, Tanaka T (2003) Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol Microbiol 49:1685–1697

    CAS  Google Scholar 

  • Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2006) Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci USA 103:6471–6476

    CAS  Google Scholar 

  • Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2007) Crystal structure of the γ-glutamyltranspeptidase precursor protein from Escherichia coli. J Biol Chem 282:2433–2439

    CAS  Google Scholar 

  • Richter S, Anderson VJ, Garufi G, Lu LH, Budzik JM, Joachimiak A, He C, Schneewind O, Missiakas D (2009) Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol Microbiol 71:404–420

    CAS  Google Scholar 

  • Saito T, Iso N, Mizuno H, Kaneda H, Suyama Y, Kawamura S, Osawa S (1974) Conformational change of a natto mucin in solution. Agric Biol Chem 38:1941–1946

    CAS  Google Scholar 

  • Scorpio A, Chabot DJ, Day WA, O'Brien DK, Vietri NJ, Itoh Y, Mohamadzadeh M, Friedlander AM (2007) Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob Agents Chemother 51:215–222

    CAS  Google Scholar 

  • Soutourina J, Plateau P, Blaquet S (2000) Metabolism of D-aminoacyl-tRNA in Escherichia coli and Saccharomyces cerevisiae cells. J Biol Chem 275:32535–32542

    CAS  Google Scholar 

  • Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-DL-glutamic acid production and biofilm formation. Mol Microbiol 57:1143–1158

    CAS  Google Scholar 

  • Sutherland MD, Kozel TR (2009) Macrophage uptake, intracellular localization, and degradation of poly-gamma-D-glutamic acid, the capsular antigen of Bacillus anthracis. Infect Immun 77:532–538

    CAS  Google Scholar 

  • Sutherland MD, Thorkildson P, Parks SD, Kozel TR (2008) In vivo fate and distribution of poly-gamma-D-glutamic acid, the capsular antigen from Bacillus anthracis. Infect Immun 76:899–906

    CAS  Google Scholar 

  • Suzuki H, Kumagai H (2002) Autocatalytic processing of gamma-glutamyltranspeptidase. J Biol Chem 277:43536–43543

    CAS  Google Scholar 

  • Suzuki T, Tahara Y (2003) Characterization of the Bacillus subtilis ywtD gene, whose product is involved in γ-polyglutamic acid degradation. J Bacteriol 185:2379–2382

    CAS  Google Scholar 

  • Suzuki H, Kumagai H, Tochikura T (1986) γ-Glutamyltranspeptidase from Escherichia coli K-12: purification and properties. J Bacteriol 168:1325–1331

    CAS  Google Scholar 

  • Szczepanek S, Cikala M, David CN (2002) Poly-gamma-glutamate synthesis during formation of nematocyst capsules in Hydra. J Cell Sci 115:745–751

    CAS  Google Scholar 

  • Tanaka T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S (1993a) Purification and characterization of poly(γ-glutamic acid) hydrolase from a filamentous fungus, Myrothecium sp. TM-4222. Biosci Biotechnol Biochem 57:2148–2153

    CAS  Google Scholar 

  • Tanaka T, Yaguchi T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S (1993b) Screening for microorganism having poly(γ-glutamic acid) endohydrolase activity and the enzyme production by Myrothecium sp. TM-4222. Biosci Biotechnol Biochem 57:1809–1810

    CAS  Google Scholar 

  • Tanimoto H, Mori M, Motoki M, Torii K, Kadowaki M, Noguchi T (2001) Natto mucilage containing poly-gamma-glutamic acid increases soluble calcium in the rat small intestine. Biosci Biotechnol Biochem 65:516–521

    CAS  Google Scholar 

  • Tanimoto H, Fox T, Eagles J, Satoh H, Nozawa H, Okiyama A, Morinaga Y, Fairweather-Tait SJ (2007) Acute effect of poly-gamma-glutamic acid on calcium absorption in post-menopausal women. J Am Coll Nutr 26:645–649

    CAS  Google Scholar 

  • Tate SS, Meister A (1981) γ-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 39:357–368

    CAS  Google Scholar 

  • Tate SS, Meister A (1985) γ-Glutamyl transpeptidase from kidney. Methods Enzymol 113:400–419

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  Google Scholar 

  • Throne CB, Gómez CG, Noyes HE, Housewright RD (1954) Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol 68:307–315

    Google Scholar 

  • Tran L-SP, Nagai T, Itoh Y (2000) Divergent structure of the comQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol 37:1159–1171

    CAS  Google Scholar 

  • Troy FA (1973a) Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248:305–315

    CAS  Google Scholar 

  • Troy FA (1973b) Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer. J Biol Chem 248:316–324

    CAS  Google Scholar 

  • Tsukahara K, Ogura M (2008) Characterization of DegU-dependent expression of bpr in Bacillus subtilis. FEMS Microbiol Lett 280:8–13

    CAS  Google Scholar 

  • Uchida I, Makino S, Sasakawa C, Yoshikawa M, Sugimoto C, Terakado N (1993) Identification of a novel gene, dep, associated with depolymerization of the capsule polymer in Bacillus anthracis. Mol Microbiol 9:487–496

    CAS  Google Scholar 

  • Urushibata Y, Tokuyama S, Tahara Y (2002) Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production. J Bacteriol 184:337–343

    CAS  Google Scholar 

  • Volcani BE, Margalith P (1957) A new species (Flavobacterium polyglutamicum) which hydrolyzes the gamma-L-glutamyl bond in polypeptides. J Bacteriol 74:646–655

    CAS  Google Scholar 

  • Wang F, Ishiguro M, Mutsukado M, Fujita KI, Tanaka T (2008) Microstructure of poly (gamma-glutamic acid) produced by Bacillus subtilis consisting of clusters of D- and L-glutamic acid repeating units. J Agric Food Chem 56:4225–4228

    CAS  Google Scholar 

  • Weber J (1990) Poly(γ-glutamic acid)s are the major constituents of Nematocysts in Hydra (Hydrazoa, Cnidaria). J Biol Chem 265:9664–9669

    CAS  Google Scholar 

  • Wu R, Richter S, Zhang R-G, Anderson VJ, Missiakas D, Joachimiak A (2009) Crystal structure of Bacillus anthracis transpeptidase enzyme CapD. J Biol Chem doi/10.10784/jbc.M109.019034

    Google Scholar 

  • Yang H, Zheng G, Peng X, Qiang B, Yuan J (2003) D-amino acids and D-Tyr-tRNATyr deacylase: stereospecificity of the translation machine revisited. FEBS Lett 552:95–98

    CAS  Google Scholar 

  • Yoshikawa T, Okada N, Oda A, Matsuo K, Mukai Y, Yoshioka Y, Akagi T, Akashi M, Nakagawa S (2008) Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun 366:408–413

    CAS  Google Scholar 

  • Zanuy D, Alemán C (2001) Poly(gamma-glutamic acid) in aqueous solution: molecular dynamics simulations of 10-and 20-residue chains at different temperatures. Biomacromolecules 2:651–657

    CAS  Google Scholar 

  • Zanuy D, Alemán C, Munoz-Guerra S (1998) On the helical conformation of un-ionized poly(gamma-D-glutamic acid). Int J Biol Macromol 23:175–184

    CAS  Google Scholar 

Download references

Acknowledgments

Parts of work presented were supported by grants from Ministry of Agriculture, Forestry, and Fishery of Japan. K.K. acknowledges Drs. Fouet A and Mock M, and National Agricultural Research Organization for a sabbatical year in France at the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keitarou Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kimura, K., Fujimoto, Z. (2010). Enzymatic Degradation of Poly-Gamma-Glutamic Acid. In: Hamano, Y. (eds) Amino-Acid Homopolymers Occurring in Nature. Microbiology Monographs, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12453-2_6

Download citation

Publish with us

Policies and ethics