Skip to main content

Occurrence and Production of Poly-Epsilon-l-Lysine in Microorganisms

  • Chapter
  • First Online:
Amino-Acid Homopolymers Occurring in Nature

Part of the book series: Microbiology Monographs ((MICROMONO,volume 15))

Abstract

This chapter addresses the occurrence and production of poly-ε-L-lysine (ε-PL) in filamentous bacteria from the family Streptomycetaceae and ergot fungi, especially in the genus Streptomyces. The presence of ε-PL, first discovered from a strain among 2,000 actinomycetes, was found quite frequently in various strains of Streptomyces by novel screening methods, including the two-stage culture of cell growth and ε-PL production cultures. Using the newly isolated producer strains of Streptomyces, their production behaviors were studied not only in terms of the time course of several production factors and effect of culture medium components, but also other aspects of the release of synthesized ε-PL into the culture broth and of the simultaneous development of ε-PL hydrolase activity with the ε-PL-producing machinery. The ε-PLs obtained were evaluated structurally. The results revealed that the polymers had a nearly monodispersed structure, and could be classified into five groups based on their chain lengths. The cell density-dependent control of the production of ε-PL, the chain length shortening by aliphatic hydroxy-compounds, and the coproduction of novel amino acid homopolymers with ε-PL are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We obtained a publication (Ohkuma et al. 1988) on an interesting biopolymer found as a novel antiviral agent, produced by an actinomycete (ATCC 31158), which was identified as poly-γ-d-diaminobutanoic acid. This polymer had a M n=5,700 and might actually be the third poly(amino acid) discovered in nature.

References

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100:14555–14561

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y, Nicchu I, Shimizu T, Onji Y, Hiraki J, Takagi H (2007) ε-Poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biotechnol 76:873–882

    Article  PubMed  CAS  Google Scholar 

  • Hiraki J (2000) ε-Polylysine: its development and utilization. Fine Chem 29:18–25

    Google Scholar 

  • Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto Y, Barnett JW Jr (2003) Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food. Regul Toxicol Pharmacol 37:328–340

    Article  PubMed  CAS  Google Scholar 

  • Hirayama C, Sakata M, Nakamura M, Ihara H, Kunitake M, Todokoro M (1999) Preparation of poly(ε-l-lysine) adsorbents and application to selective removal of lipopolysaccharides. J Chromatogr B 721:187–195

    Article  CAS  Google Scholar 

  • Hirohara H, Takehara M, Saimura M, Ikezaki A, Miyamoto M (2006) Biosynthesis of poly(ε-l-lysine)s in two newly isolated strains of Streptomyces sp. Appl Microbiol Biotechnol 73:321–331

    Article  PubMed  CAS  Google Scholar 

  • Hirohara H, Saimura M, Takehara M, Miyamoto M, Ikezaki A (2007) Substantially monodispersed poly(ε-l-lysine)s frequently occurred in newly isolated strains of Streptomyces sp. Appl Microbiol Biotechnol 76:1009–1016

    Article  PubMed  CAS  Google Scholar 

  • Ikai H, Yamamoto S (1997) Identification and analysis of a gene encoding L-2,4-diamonobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. J Bacteriol 179:5118–5125

    PubMed  CAS  Google Scholar 

  • Ivánovics G, Erdös L (1937) Ein Beitrag zum Wesen der Kapselsubstanz des Milizbrandbazillus. Z Immunitätsforsch 90:5–19

    Google Scholar 

  • Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91:190–194

    PubMed  CAS  Google Scholar 

  • Kito M, Takimoto R, Yoshida T, Nagasawa T (2002a) Purification and characterization of an ε-poly-l-lysine-degrading enzyme from an ε-poly-l-lysine producing strain of Streptomyces albulus. Arch Microbiol 178:325–330

    Article  PubMed  CAS  Google Scholar 

  • Kito M, Onji Y, Yoshida T, Nagasawa T (2002b) Occurrence of ε-poly-l-lysine-degrading enzyme in ε-poly-l-lysine-tolerant Sphingobacterium multivorum OJ10: purification and characterization. FEMS Microbiol Lett 207:147–151

    PubMed  CAS  Google Scholar 

  • Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596

    Article  PubMed  CAS  Google Scholar 

  • March JC, Bentley WE (2004) Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol 15:495–502

    Article  PubMed  CAS  Google Scholar 

  • Nagahata R, Shimada K, Kishine K, Sato H, Matsuyama S, Togashi H, Kinugasa S (2007) Interlaboratory comparison of average molecular mass and molecular mass distribution of a polystyrene reference material determined by MALDI-TOF mass spectrometry. Int J Mass Spectrom 263:213–221

    Article  CAS  Google Scholar 

  • Nishikawa M (2009) Molecular mass control using polyanionic cyclodextrin derivatives for the epsilon-poly-l-lysine biosynthesis by Streptomyces. Enzyme Microb Technol 45:295–298

    Article  CAS  Google Scholar 

  • Nishikawa M, Kobayashi K (2009) Streptomyces roseoverticillatus produces two different poly(amino acid)s: lariat-shaped γ-poly(l-glutamic acid) and ε-poly(l-lysine). Microbiology 155:2988–2993

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa M, Ogawa K (2002) Distribution of microbes producing antimicrobial ε-poly-l-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol 68:3575–3581

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa M, Ogawa K (2006) Inhibition of epsilon-poly-l-lysine biosynthesis in Streptomycetaceae bacteria by short-chain polyols. Appl Environ Microbiol 72:2306–2312

    Article  PubMed  CAS  Google Scholar 

  • Núñez LE, Méndez C, Braña AF, Blanco G, Salas JA (2003) The biosynthetic gene cluster for the β-lactam carbapenem thienamycin in Streptomyces cattleya. Chem Biol 10:301–311

    Article  PubMed  Google Scholar 

  • Ohkuma H, Tenmyo O, Konishi M, Oki T, Kawaguchi H (1988) BMY-28190, a novel antiviral antibiotic complex. J Antibiot 41:849–854

    Article  PubMed  CAS  Google Scholar 

  • Oppermann-Sanio FB, Steinbüchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22

    Article  PubMed  Google Scholar 

  • Oppermann-Sanio FB, Steinbüchel A (2003) Cyanophycin. In: Fahnestock SR, Steinbüchel A (eds) Biopolymers, vol 7. Wiley, Weinheim, pp 83–106

    Google Scholar 

  • Saimura M, Takehara M, Mizukami S, Kataoka K, Hirohara H (2008) Biosynthesis of nearly monodispersed poly(ε-l-lysine) in Streptomyces species. Biotechnol Lett 30:377–385

    Article  PubMed  CAS  Google Scholar 

  • Schlosser G, Jakab A, Pocsfalvi G, Vékey K, Hudecz F, Mezö G (2009) Matrix/analyte ratio influencing polymer molecular weight distribution in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41:1807–1809

    Article  CAS  Google Scholar 

  • Shima S, Sakai H (1981a) Poly-l-lysine produced by Streptomyces. II. Taxonomy and fermentation studies. Agric Biol Chem 45:2497–2502

    Article  CAS  Google Scholar 

  • Shima S, Sakai H (1981b) Poly-l-lysine produced by Streptomyces. III. Chemical studies. Agric Biol Chem 45:2503–2508

    Article  CAS  Google Scholar 

  • Shima S, Fukuhara Y, Sakai H (1982) Inactivation of bacteriophages by ε-poly-l-lysine produced by Streptomyces. Agric Biol Chem 46:1917–1919

    Article  CAS  Google Scholar 

  • Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of ε-poly-l-lysine. J Antibiot 37:1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Shimada K, Nagahata R, Kawabata S, Matsuyama S, Saito T, Kinugasa S (2003) Evaluation of the quantitativeness of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an equimolar mixture of uniform poly(ethylene glycol) oligomers. J Mass Spectrom 38:948–954

    Article  PubMed  CAS  Google Scholar 

  • Szókán Gy, Almás M, Krizsán K, Khlafulla AR, Tyihák E, Szende B (1997) Structure determination and synthesis of lysine isopeptides influencing on cell proliferation. Biopolymers 42:305–318

    Article  PubMed  Google Scholar 

  • Takehara M, Saimura M, Inaba H, Hirohara H (2008) Poly(γ-l-diaminobutanoic acid), a novel poly(amino acid), coproduced with poly(ε-l-lysine) by two strains of Streptomyces celluloflavus. FEMS Microbiol Lett 286:110–117

    Article  PubMed  CAS  Google Scholar 

  • Takehara M, Hibino A, Saimura M, Hirohara H (2010) High-yield production of short chain length poly(ε-l-lysine) consisting of 5–20 residues by Streptomyces aureofaciens, and its antimicrobial activity. Biotechnol Lett (In press), doi: 10.1007/s10529-010-0294-9

    Article  Google Scholar 

  • Tsujita T, Takaichi H, Takaku T, Aoyama S, Hiraki J (2006) Antiobesity action of ε-polylysine, a potent inhibitor of pancreatic lipase. J Lipid Res 47:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Vandenende CS, Vlasschaert M, Seah SYK (2004) Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 186:5596–5602

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Mushegian A, Lory S, Jin S (1996) Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc Natl Acad Sci USA 93:10434–10439

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Maruyama C, Takagi H, Hamano Y (2008) ε-Poly-l-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nature Chem Biol 4:766–772

    Article  CAS  Google Scholar 

  • Yoshida T, Nagasawa T (2003) ε-Poly-l-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62:21–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to all our coworkers at the Department of Materials Science in the University of Shiga Prefecture who contributed and are contributing to ε-PL research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Munenori Takehara or Hideo Hirohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takehara, M., Hirohara, H. (2010). Occurrence and Production of Poly-Epsilon-l-Lysine in Microorganisms. In: Hamano, Y. (eds) Amino-Acid Homopolymers Occurring in Nature. Microbiology Monographs, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12453-2_1

Download citation

Publish with us

Policies and ethics