Skip to main content

Guard Games on Graphs: Keep the Intruder Out!

  • Conference paper
Approximation and Online Algorithms (WAOA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5893))

Included in the following conference series:

Abstract

A team of mobile agents, called guards, tries to keep an intruder out of an assigned area by blocking all possible attacks. In a graph model for this setting, the agents and the intruder are located on the vertices of a graph, and they move from node to node via connecting edges. The area protected by the guards is a subgraph of the given graph. We investigate the algorithmic aspects of finding the minimum number of guards sufficient to patrol the area. We show that this problem is PSPACE-hard in general and proceed to investigate a variant of the game where the intruder must reach the guarded area in a single step in order to win. We show that this case approximates the general problem, and that for graphs without cycles of length 5 the minimum number of required guards in both games coincides. We give a polynomial time algorithm for solving the one-step guarding problem in graphs of bounded treewidth, and complement this result by showing that the problem is W[1]-hard parameterized by the treewidth of the input graph. We conclude the study of the one-step guarding problem in bounded treewidth graphs by showing that the problem is fixed parameter tractable (FPT) parameterized by the treewidth and maximum degree of the input graph. Finally, we turn our attention to a large class of sparse graphs, including planar graphs and graphs of bounded genus, namely graphs excluding some fixed apex graph as a minor. We prove that the problem is FPT and give a PTAS on apex-minor-free graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8, 1–11 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F., Stege, U.: A refined search tree technique for dominating set on planar graphs. J. Comput. System Sci. 71, 385–405 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alspach, B.: Searching and sweeping graphs: a brief survey. Matematiche (Catania) 59, 5–37 (2006)

    MathSciNet  Google Scholar 

  4. Anderson, M., Barrientos, C., Brigham, R.C., Carrington, J.R., Vitray, R.P., Yellen, J.: Maximum-demand graphs for eternal security. J. Combin. Math. Combin. Comput. 61, 111–127 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41, 153–180 (1994)

    MATH  MathSciNet  Google Scholar 

  6. Berarducci, A., Intrigila, B.: On the cop number of a graph. Adv. in Appl. Math. 14, 389–403 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burger, A.P., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren, J.H., Winterbach, W.: Finite order domination in graphs. J. Combin. Math. Combin. Comput. 49, 159–175 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Burger, A.P., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren, J.H., Winterbach, W.: Infinite order domination in graphs. J. Combin. Math. Combin. Comput. 50, 179–194 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Demaine, E.D., Hajiaghayi, M.T.: Equivalence of local treewidth and linear local treewidth and its algorithmic applications. In: Munro, J.I. (ed.) SODA, pp. 840–849. SIAM, Philadelphia (2004)

    Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)

    Google Scholar 

  12. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In: SODA, pp. 632–640 (1995)

    Google Scholar 

  13. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Diameter and treewidth in minor-closed graph families 27, 275–291 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Fomin, F.V., Golovach, P.A., Hall, A., Mihalák, M., Vicari, E., Widmayer, P.: How to guard a graph? In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 318–329. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Fomin, F.V., Golovach, P.A., Kratochvíl, J.: On tractability of cops and robbers game. In: IFIP, vol. 273, pp. 171–185 (2008)

    Google Scholar 

  16. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399, 236–245 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Co, San Francisco (1979)

    MATH  Google Scholar 

  18. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J. Combin. Math. Combin. Comput. 52, 169–180 (2005)

    MATH  MathSciNet  Google Scholar 

  19. Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theoret. Comput. Sci. 143, 93–112 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Goldwasser, J.L., Klostermeyer, W.F.: Tight bounds for eternal dominating sets in graphs. Discrete Math. 308, 2589–2593 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hahn, G., MacGillivray, G.: A note on k-cop, l-robber games on graphs. Discrete Math. 306, 2492–2497 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Klostermeyer, W.F.: Complexity of eternal security. J. Combin. Math. Combin. Comput. 61, 135–140 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Klostermeyer, W.F., MacGillivray, G.: Eternally secure sets, independence sets and cliques. AKCE Int. J. Graphs Comb. 2, 119–122 (2005)

    MathSciNet  Google Scholar 

  24. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52, 203–225 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Golovach, P.A., Lokshtanov, D. (2010). Guard Games on Graphs: Keep the Intruder Out!. In: Bampis, E., Jansen, K. (eds) Approximation and Online Algorithms. WAOA 2009. Lecture Notes in Computer Science, vol 5893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12450-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12450-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12449-5

  • Online ISBN: 978-3-642-12450-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics