Skip to main content

Noncoding RNAs as Therapeutic Targets

  • Chapter
  • First Online:
RNA Technologies and Their Applications

Part of the book series: RNA Technologies ((RNATECHN))

  • 1524 Accesses

Abstract

Noncoding RNAs are key players in the regulation of complex cellular processes. Over the years, it has been demonstrated that their abnormal expression is associated with many human pathologies including developmental and neurobehavioral disorders, diabetes, obesity, and cancer. A wide spectrum of activities and a large number of genes that are regulated by RNA-dependent mechanisms makes the ncRNA molecules attractive targets for developing next generation therapeutic agents. This chapter outlines the principles of RNA regulation, the involvement of various RNAs in human diseases, and the strategies of application of ncRNA-targeted therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson JF, Kwan KY, O'Roak BJ et al (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310:317–320

    PubMed  CAS  Google Scholar 

  • Abrajano JJ, Qureshi IA, Gokhan S et al (2009) REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLoS One 4:e7936

    PubMed  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA et al (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    PubMed  CAS  Google Scholar 

  • Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88

    PubMed  Google Scholar 

  • Annilo T, Kepp K, Laan M (2009) Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol Biol 10:81

    PubMed  Google Scholar 

  • BandrĂ©s E, Cubedo E, Agirre X et al (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29

    PubMed  Google Scholar 

  • Barboric M, Lenasi T, Chen H et al (2009) 7SK snRNP/P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proc Natl Acad Sci USA 106:7798–7803

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  • Beilharz TH, Humphreys DT, Clancy JL et al (2009) microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One 4:e6783

    PubMed  Google Scholar 

  • Beiter T, Reich E, Williams RW et al (2009) Antisense transcription: a critical look in both directions. Cell Mol Life Sci 66:99–112

    Google Scholar 

  • Bejerano G, Pheasant M, Makunin I et al (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    PubMed  CAS  Google Scholar 

  • Beltran M, Puig I, Pena C et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev 22:756–769

    PubMed  CAS  Google Scholar 

  • Berteaux N, Lottin S, MontĂ© D et al (2005) H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 280:29625–29636

    PubMed  CAS  Google Scholar 

  • Beveridge NJ, Tooney PA, Carroll AP et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    PubMed  CAS  Google Scholar 

  • Blenkiron C, Goldstein LD, Thorne NP et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumour subtype. Genome Biol 8:R214

    PubMed  Google Scholar 

  • Bond AM, Vangompel MJ, Sametsky EA et al (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020–1027

    PubMed  CAS  Google Scholar 

  • Bussemakers MJ, van Bokhoven A, Verhaegh GW et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979

    PubMed  CAS  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  • Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316

    PubMed  CAS  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    PubMed  CAS  Google Scholar 

  • Calin GA, Liu CG, Ferracin M et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12:215–229

    PubMed  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    PubMed  CAS  Google Scholar 

  • Care A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    PubMed  CAS  Google Scholar 

  • Caretti G, Schiltz RL, Dilworth FJ et al (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11:547–560

    PubMed  CAS  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    PubMed  CAS  Google Scholar 

  • Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 4:e5848

    PubMed  Google Scholar 

  • Chan AS, Thorner PS, Squire JA et al (2002) Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between Rhabdomyosarcoma types. Oncogene 21:3029–3037

    PubMed  CAS  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    PubMed  CAS  Google Scholar 

  • Chau YM, Pando S, Taylor HS (2002) HOXA11 silencing and endogenous HOXA11 antisense ribonucleic acid in the uterine endometrium. J Clin Endocrinol Metab 87:2674–2680

    PubMed  CAS  Google Scholar 

  • Chaumeil J, Le Baccon P, Wutz A et al (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2231

    PubMed  CAS  Google Scholar 

  • Chen Y, Liu W, Chao T et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205

    PubMed  CAS  Google Scholar 

  • Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    PubMed  CAS  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    PubMed  CAS  Google Scholar 

  • Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    PubMed  CAS  Google Scholar 

  • Chooniedass-Kothari S, Hamedani MK, Troup S et al (2006) The steroid receptor RNA activator protein is expressed in breast tumor tissues. Int J Cancer 118:1054–1059

    PubMed  CAS  Google Scholar 

  • Chooniedass-Kothari S, Emberley E, Hamedani MK et al (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566:43–47

    PubMed  CAS  Google Scholar 

  • Chow J, Heard E (2009) X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol 21:359–366

    PubMed  CAS  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    PubMed  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    PubMed  CAS  Google Scholar 

  • Clark TA, Schweitzer AC, Chen TX et al (2007) Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol 8:R64

    PubMed  Google Scholar 

  • Cloonan N, Brown MK, Steptoe AL et al (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9:R127

    PubMed  Google Scholar 

  • Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    PubMed  CAS  Google Scholar 

  • Davis IJ, His B, Arroyo JD et al (2003) Cloning of an alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA 100:6051–6056

    PubMed  CAS  Google Scholar 

  • Davis S, Lollo B, Freier S et al (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34:2294–2304

    PubMed  CAS  Google Scholar 

  • De Biase I, Chutake YK, Rindler PM et al (2009) Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription. PLoS One 4:e7914

    PubMed  Google Scholar 

  • de Kok JB, Verhaegh GW, Roelofs RW et al (2002) DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 62:2695–2698

    PubMed  Google Scholar 

  • de Napoles M, Mermoud JE, Wakao R et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676

    PubMed  Google Scholar 

  • de Parseval N, Alkabbani H, Heidmann T (1999) The long terminal repeats of the HERV-H human endogenous retrovirus contain binding sites for transcriptional regulation by the Myb protein. J Gen Virol 80:841–845

    PubMed  Google Scholar 

  • de Smith AJ, Purmann C, Walters RG et al (2009) A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 18:3257–3265

    PubMed  Google Scholar 

  • DeBaun MR, Niemitz EL, McNeil DE et al (2002) Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith–Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 70:604–611

    PubMed  CAS  Google Scholar 

  • Dong XY, Guo P, Boyd J et al (2009) Implication of snoRNA U50 in human breast cancer. J Genet Genomics 36:447–454

    PubMed  CAS  Google Scholar 

  • Duning K, Buck F, Barnekow A et al (2008) SYNCRIP, a component of dendritically localized mRNPs, binds to the translation regulator BC200 RNA. J Neurochem 105:351–359

    PubMed  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    PubMed  CAS  Google Scholar 

  • ElmĂ©n J, Lindow M, Silahtaroglu A et al (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36:1153–1162

    PubMed  Google Scholar 

  • Emberley E, Huang GJ, Hamedani MK et al (2003) Identification of new human coding steroid receptor RNA activator isoforms. Biochem Biophys Res Commun 301:509–515

    PubMed  CAS  Google Scholar 

  • Enklaar T, Zabel BU, Prawitt D (2006) Beckwith–Wiedemann syndrome: multiple molecular mechanisms. Expert Rev Mol Med 8:1–19

    PubMed  Google Scholar 

  • Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    PubMed  CAS  Google Scholar 

  • Espinoza CA, Allen TA, Hieb AR et al (2004) B2 RNA binds directly to RNA polymerase to repress transcript synthesis. Nat Struct Mol Biol 11:822–829

    PubMed  CAS  Google Scholar 

  • Fabian MR, Mathonnet G, Sundermeier T et al (2009) Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35:868–880

    PubMed  CAS  Google Scholar 

  • Faghihi MA, Modarresi F, Khalil AM et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730

    PubMed  CAS  Google Scholar 

  • Fellig Y, Ariel I, Ohana P et al (2005) H19 expression in hepatic metastases from a range of human carcinomas. J Clin Pathol 58:1064–1068

    PubMed  CAS  Google Scholar 

  • Feng J, Bi C, Clark BS et al (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484

    PubMed  CAS  Google Scholar 

  • Fontana L, Fiori ME, Albini S et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3:e2236

    PubMed  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    PubMed  CAS  Google Scholar 

  • Fu X, Ravindranath L, Tran N et al (2006) Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 25:135–141

    PubMed  Google Scholar 

  • Gabory A, Ripoche MA, Le Digarcher A (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136:3413–3421

    PubMed  CAS  Google Scholar 

  • Gabory A, Ripoche MA, Yoshimizu T et al (2006) The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res 113:188–193

    PubMed  CAS  Google Scholar 

  • Galli UM, Sauter M, Lecher B et al (2005) Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene 24:3223–3228

    PubMed  CAS  Google Scholar 

  • Hansen A, Henderson S, Lagos D et al (2010) KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev 24:195–205

    PubMed  CAS  Google Scholar 

  • Hao Y, Crenshaw T, Moulton T et al (1993) Tumour-suppressor activity of H19 RNA. Nature 365:764–767

    PubMed  CAS  Google Scholar 

  • Hatchell EC, Colley SM, Beveridge DJ et al (2006) SLIRP, a small SRA binding protein, is a nuclear receptor corepressor. Mol Cell 22:657–668

    PubMed  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L et al (2008a) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis. doi:10.1016/j.nbd.2008.11.009

    PubMed  Google Scholar 

  • Hebert SS, Horre K, Nicolai L et al (2008b) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    PubMed  CAS  Google Scholar 

  • Hobert O (2004) Common logic of transcription factor and microRNA action. Trends Biochem Sci 9:462–468

    Google Scholar 

  • Hon LS, Zhang Z (2007) The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 8:R166

    PubMed  Google Scholar 

  • Horike S, Mitsuya K, Meguro M et al (2000) Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith–Wiedemann syndrome. Hum Mol Genet 9:2075–2083

    PubMed  CAS  Google Scholar 

  • Horsthemke B, Wagstaff J (2008) Mechanisms of imprinting of the Prader–Willi/Angelman region. Am J Med Genet 146A:2041–2052

    PubMed  CAS  Google Scholar 

  • Hutchinson JN, Ensminger AW, Clemson CM et al (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39

    PubMed  Google Scholar 

  • Iida T, Nakayama J, Moazed D (2008) siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription. Mol Cell 31:178–189

    PubMed  CAS  Google Scholar 

  • Imamura T, Yamamoto S, Ohgane J et al (2004a) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322:593–600

    PubMed  CAS  Google Scholar 

  • Imamura T, Miyauchi-Senda N, Tanaka S et al (2004b) Identification of genetic and epigenetic similarities of SPHK1/Sphk1 in mammals. J Vet Med Sci 66:1387–1393

    PubMed  CAS  Google Scholar 

  • Imamura T, Ohgane J, Ito S et al (2001) CpG island of rat sphingosine kinase-1 gene: tissue-dependent DNA methylation status and multiple alternative first exons. Genomics 76:113–125

    Google Scholar 

  • Ioannidis P, Kottaridi C, Dimitriadis E et al (2004) Expression of the RNA-binding protein CRD-BP in brain and non-small cell lung tumors. Cancer Lett 209:245–250

    PubMed  CAS  Google Scholar 

  • Ishii N, Ozaki K, Sato H et al (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099

    PubMed  CAS  Google Scholar 

  • Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041

    PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    PubMed  CAS  Google Scholar 

  • Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 MicroRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    PubMed  CAS  Google Scholar 

  • Jonkers I, Monkhorst K, Rentmeester E et al (2008) Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Mol Cell Biol 28:5583–5594

    PubMed  CAS  Google Scholar 

  • Kanduri C, Thakur N, Pandey RR (2006) The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J 25:2096–2102

    PubMed  CAS  Google Scholar 

  • Karube Y, Tanaka H, Osada H et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–155

    PubMed  CAS  Google Scholar 

  • Katayama S, Tomaru Y, Kasukawa T et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    PubMed  Google Scholar 

  • Kawashima H, Takano H, Sugita S et al (2003) A novel steroid receptor co-activator protein (SRAP) as an alternative form of steroid receptor RNA-activator gene: expression in prostate cancer cells and enhancement of androgen receptor activity. Biochem J 369:163–171

    PubMed  CAS  Google Scholar 

  • Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    PubMed  CAS  Google Scholar 

  • Kim J, Inoue K, Ishii J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    PubMed  CAS  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S et al (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151

    PubMed  CAS  Google Scholar 

  • Kishore S, Khanna A, Zhang Z et al (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19(7):1153–1164

    PubMed  CAS  Google Scholar 

  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    PubMed  CAS  Google Scholar 

  • Klemke M, Meyer A, Hashemi Nezhad M et al (2010) Loss of let-7 binding sites resulting from truncations of the 3â€Č untranslated region of HMGA2 mRNA in uterine leiomyomas. Cancer Genet Cytogenet 196:119–123

    PubMed  CAS  Google Scholar 

  • Kocerha J, Faghihi MA, Lopez-Toledano MA et al (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA 106:3507–3512

    PubMed  CAS  Google Scholar 

  • Koochek M, Harvard C, Hildebrand MJ et al (2006) 15q duplication associated with autism in a multiplex family with a familial cryptic translocation t(14;15)(q11.2;q13.3) detected using array-CGH. Clin Genet 69:124–134

    PubMed  CAS  Google Scholar 

  • Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53

    PubMed  CAS  Google Scholar 

  • Krystal GW, Armstrong BC, Battey JF (1990) N-myc mRNA forms an RNA–RNA duplex with endogenous antisense transcripts. Mol Cell Biol 10:4180–4191

    PubMed  CAS  Google Scholar 

  • Kuhn DE, Nuovo GJ, Martin MM et al (2008) Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 370:473–477

    PubMed  CAS  Google Scholar 

  • Kuiper RP, Schepens M, Thijssen J et al (2003) Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum Mol Genet 12:1661–1669

    PubMed  CAS  Google Scholar 

  • Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Hsieh J, Nakashima K et al (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    PubMed  CAS  Google Scholar 

  • Lanz R, Razani B, Goldberg AD et al (2002) Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci USA 99:16081–16086

    PubMed  CAS  Google Scholar 

  • Lanz RB, McKenna NJ, Onate SA et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27

    PubMed  CAS  Google Scholar 

  • Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030

    PubMed  CAS  Google Scholar 

  • Leygue E (2007) Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. Nucl Recept Signal 5:e006

    PubMed  Google Scholar 

  • Li Y, Guessous F, Zhang Y et al (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69:7569–7576

    PubMed  CAS  Google Scholar 

  • Liang Z, Wu H, Reddy S et al (2007) Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun 363:542–546

    PubMed  CAS  Google Scholar 

  • Lin D, Pestova TV, Hellen CU et al (2008) Translational control by a small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol Cell Biol 28:3008–3019

    PubMed  CAS  Google Scholar 

  • Lin R, Maeda S, Liu C et al (2006) A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 26:851–858

    PubMed  Google Scholar 

  • Linsley PS, Schelter J, Burchard J et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    PubMed  CAS  Google Scholar 

  • Lottin S, Adriaenssens E, Berteaux N et al (2005) The human H19 gene is frequently overexpressed in myometrium and stroma during pathological endometrial proliferative events. Eur J Cancer 41:168–177

    PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    PubMed  CAS  Google Scholar 

  • Mancini-Dinardo D, Steele SJ, Levorse JM et al (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20:1268–1282

    PubMed  CAS  Google Scholar 

  • Mangeney M, Pothlichet J, Renard M et al (2005) Endogenous retrovirus expression is required for murine melanoma tumor growth in vivo. Cancer Res 65:2588–2591

    PubMed  CAS  Google Scholar 

  • Manoharan H, Babcock K, Pitot HC (2004) Changes in the DNA methylation profile of the rat H19 gene upstream region during development and transgenic hepatocarcinogenesis and its role in the imprinted transcriptional regulation of the H19 gene. Mol Carcinog 41:1–16

    PubMed  CAS  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    PubMed  CAS  Google Scholar 

  • Markert A, Grimm M, Martinez J et al (2008) The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 9:569–575

    PubMed  CAS  Google Scholar 

  • Martignetti JA, Brosius J (1995) BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript. Mol Cell Biol 15:1642–1650

    PubMed  CAS  Google Scholar 

  • Matouk I, Ayesh B, Schneider T et al (2004) Oncofetal splice-pattern of the human H19 gene. Biochem Biophys Res Commun 318:916–919

    PubMed  CAS  Google Scholar 

  • Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    PubMed  CAS  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991

    PubMed  CAS  Google Scholar 

  • Mattick JS (2003) Introns and noncoding RNAs the hidden layer of eukaryotic complexity. In: Barciszewski J, Erdmann VA (eds) Noncoding RNAs: molecular biology and molecular medicine. Eurekah, Austin, pp 12–33

    Google Scholar 

  • Mattick JS (2009a) Deconstructing the dogma. A new view of the evolution and genetic programming of complex organisms. Ann NY Acad Sci 1178:29–46

    PubMed  CAS  Google Scholar 

  • Mattick JS (2009b) The genetic signatures of noncoding RNAs. PLoS Genet 5:e1000459

    PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:R17–29

    PubMed  CAS  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    PubMed  CAS  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    PubMed  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    PubMed  CAS  Google Scholar 

  • Michael MZ, O' Connor SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9:1415–1423

    PubMed  CAS  Google Scholar 

  • Mishra PK, Tyagi N, Kumar M et al (2009) MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 13:778–789

    PubMed  CAS  Google Scholar 

  • Mohammad F, Mondal T, Kanduri C (2009) Epigenetics of imprinted long noncoding RNAs. Epigenetics 4:277–286

    PubMed  CAS  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–463

    PubMed  CAS  Google Scholar 

  • Mourtada-Maarabouni M, Pickard MR, Hedge VL et al (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208

    PubMed  CAS  Google Scholar 

  • Munroe SH, Lazar MA (1991) Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem 266:22083–22086

    PubMed  CAS  Google Scholar 

  • Murakami Y, Yasuda T, Saigo K et al (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25:2537–2545

    PubMed  CAS  Google Scholar 

  • Nagano T, Mitchell JA, Sanz LA et al (2008) The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–1720

    PubMed  CAS  Google Scholar 

  • Nakano S, Murakami K, Meguro M et al (2006) Expression profile of LIT1/KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers. Cancer Sci 97:1147–1154

    PubMed  CAS  Google Scholar 

  • Newall AE, Duthie S, Formstone E et al (2001) Primary non-random X inactivation associated with disruption of Xist promoter regulation. Hum Mol Genet 10:581–589

    PubMed  CAS  Google Scholar 

  • Nguyen VT, Kiss T, Michels AA et al (2001) 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–325

    PubMed  CAS  Google Scholar 

  • Niemitz EL, DeBaun MR, Fallon J et al (2004) Microdeletion of LIT1 in familial Beckwith-Wiedemann syndrome. Am J Hum Genet 75:844–849

    PubMed  CAS  Google Scholar 

  • Okutsu T, Kuroiwa Y, Kagitani F et al (2000) Expression and imprinting status of human PEG8/IGF2AS, a paternally expressed antisense transcript from the IGF2 locus, in Wilms’ tumors. J Biochem 127:475–483

    PubMed  CAS  Google Scholar 

  • Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172

    PubMed  CAS  Google Scholar 

  • Pauler FM, Koerner MV, Barlow DP (2007) Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet 23:284–292

    PubMed  CAS  Google Scholar 

  • Pauley KM, Cha S, Chan EK (2009) MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32:189–194

    PubMed  CAS  Google Scholar 

  • Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772

    PubMed  CAS  Google Scholar 

  • Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8:843–852

    PubMed  CAS  Google Scholar 

  • Petrovics G, Zhang W, Makarem M et al (2004) Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 23:605–611

    PubMed  CAS  Google Scholar 

  • Pibouin L, Villaudy J, Ferbus D et al (2002) Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet 133:55–60

    PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309:1573–1576

    PubMed  CAS  Google Scholar 

  • Pizzuti A, Novelli G, Ratti A et al (1999) Isolation and characterization of a novel transcript embedded within HIRA, a gene deleted in DiGeorge syndrome. Mol Genet Metabol 67:227–235

    CAS  Google Scholar 

  • Plath K, Talbot D, Hamer KM et al (2004) Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol 167:1025–1035

    PubMed  CAS  Google Scholar 

  • Polesskaya OO, Haroutunian V, Davis KL et al (2003) Novel putative nonprotein-coding RNA gene from 11q14 displays decreased expression in brains of patients with schizophrenia. J Neurosci Res 74:111–122

    PubMed  CAS  Google Scholar 

  • Rajaram V, Knezevich S, Bove KE et al (2007) DNA sequence of the translocation breakpoints in undifferentiated embryonal sarcoma arising in mesenchymal hamartoma of the liver harboring the t(11;19)(q11;q13.4) translocation. Genes Chromosomes Cancer 46:508–513

    PubMed  CAS  Google Scholar 

  • Reis EM, Ojopi EP, Alberto FL et al (2005) Large-scale transcriptome analyses reveal new genetic marker candidates of head, neck, and thyroid cancer. Cancer Res 65:1693–1699

    PubMed  Google Scholar 

  • Roldo C, Missiaglia E, Hagan JP et al (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathological features and clinical behavior. J Clin Oncol 24:4677–4684

    PubMed  CAS  Google Scholar 

  • Sahoo T, del Gaudio D, German JR et al (2008) Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40:719–721

    PubMed  CAS  Google Scholar 

  • Sevignani C, Calin GA, Nnadi SC et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104:8017–8022

    PubMed  CAS  Google Scholar 

  • Shamovsky I, Ivannikov M, Kandel ES et al (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560

    PubMed  CAS  Google Scholar 

  • Shamovsky I, Nudler E (2009) Isolation and characterization of the heat shock RNA 1. Methods Mol Biol 540:265–279

    PubMed  CAS  Google Scholar 

  • Shi Y, Downes M, Xie W et al (2001) SHARP, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 15:1140–1151

    PubMed  CAS  Google Scholar 

  • Shiota K (2004) DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res 105:325–334

    PubMed  CAS  Google Scholar 

  • Si ML, Zhu S, Wu H et al (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803

    PubMed  CAS  Google Scholar 

  • Sleutels F, Tjon G, Ludwig T et al (2003) Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. EMBO J 22:3696–3704

    PubMed  CAS  Google Scholar 

  • Soejima H, Nakagawachi T, Zhao W et al (2004) Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer. Oncogene 23:4380–4388

    PubMed  CAS  Google Scholar 

  • Sonkoly E, Bata-Csorgo Z, Pivarcsi A et al (2005) Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J Biol Chem 280:24159–24167

    PubMed  CAS  Google Scholar 

  • Srikantan V, Zou Z, Petrovics G et al (2000) PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA 97:12216–12221

    PubMed  CAS  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    PubMed  CAS  Google Scholar 

  • Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA. Science 317:376–381

    PubMed  CAS  Google Scholar 

  • Sutherland HF, Wadey R, McKie JM et al (1996) Identification of a novel transcript disrupted by a balanced translocation associated with DiGeorge syndrome. Am J Hum Genet 59:23–31

    PubMed  CAS  Google Scholar 

  • Szymanski M, Barciszewski J (2006) RNA regulation in mammals. Ann NY Acad Sci 1067:461–468

    PubMed  CAS  Google Scholar 

  • Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29:288–299

    PubMed  CAS  Google Scholar 

  • Tam OH, Aravin AA, Stein P et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    PubMed  CAS  Google Scholar 

  • Tang X, Tang G, Ozcan S (2008) Role of microRNAs in diabetes. Biochim Biophys Acta 1779:697–701

    PubMed  CAS  Google Scholar 

  • Terranova R, Yokobayashi S, Stadler MB et al (2009) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15:668–679

    Google Scholar 

  • Thakur N, Tiwari VK, Thomassin H et al (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24:7855–7862

    PubMed  CAS  Google Scholar 

  • Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    PubMed  CAS  Google Scholar 

  • Tiedge H, Fremeau RT Jr, Weinstock PH et al (1991) Dendritic location of neural BC1 RNA. Proc Natl Acad Sci USA 88:2093–2097

    PubMed  CAS  Google Scholar 

  • Tsang WP, Wong TWL, Cheung AHH et al (2007) Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA 13:890–898

    PubMed  CAS  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D et al (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165

    PubMed  CAS  Google Scholar 

  • Turner JD, Schote AB, Macedo JA et al (2006) Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol 72:1529–1536

    PubMed  CAS  Google Scholar 

  • Umlauf D, Goto Y, Cao R et al (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300

    PubMed  CAS  Google Scholar 

  • Verhagen PC, Hermans KG, Brok MO et al (2002) Deletion of chromosomal region 6q14-16 in prostate cancer. Int J Cancer 102:142–147

    PubMed  CAS  Google Scholar 

  • Vincent JB, Herbrick JA, Gurling HM et al (2000) Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am J Hum Genet 67:510–514

    PubMed  CAS  Google Scholar 

  • Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289

    PubMed  CAS  Google Scholar 

  • Wang H, Iacoangeli A, Popp S et al (2002) Dendritic BC1 RNA: functional role in regulation of translation initiation. J Neurosci 22:10232–10241

    PubMed  CAS  Google Scholar 

  • Wang XS, Zhang Z, Wang HC et al (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12:4851–4858

    PubMed  CAS  Google Scholar 

  • Watanabe M, Yanagisawa J, Kitagawa H et al (2001) A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor a coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 20:1341–1352

    PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    PubMed  CAS  Google Scholar 

  • Willingham AT, Orth AP, Batalov S et al (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573

    PubMed  CAS  Google Scholar 

  • Wutz A, Smrzka OW, Schweifer N et al (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749

    PubMed  CAS  Google Scholar 

  • Xiao J, Yang B, Lin H et al (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292

    PubMed  CAS  Google Scholar 

  • Xie H, Sun L, Lodish HF (2009) Targeting microRNAs in obesity. Expert Opin Ther Targets 13:1227–1238

    PubMed  CAS  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci USA 106:5569–5574

    PubMed  CAS  Google Scholar 

  • Yan MD, Hong CC, Lai GM et al (2005) Identification and characterization of a novel gene Saf transcribed from the opposite strand of Fas. Hum Mol Genet 14:1465–1474

    PubMed  CAS  Google Scholar 

  • Yang Z, Zhu Q, Luo K et al (2001) The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317–322

    PubMed  CAS  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    PubMed  CAS  Google Scholar 

  • Yik JH, Chen R, Pezda AC et al (2004) A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol 24:5094–5105

    PubMed  CAS  Google Scholar 

  • Yu W, Gius D, Onyango P et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    PubMed  CAS  Google Scholar 

  • Zalfa F, Adinolfi S, Napoli I et al (2005) Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J Biol Chem 280:33403–33410

    PubMed  CAS  Google Scholar 

  • Zalfa F, Giorgi M, Primerano B et al (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112:317–327

    PubMed  CAS  Google Scholar 

  • Zhang X, Rice K, Wang Y et al (2009) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151(3):939–947

    PubMed  Google Scholar 

  • Zhao X, Patton JR, Davis SL et al (2004) Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator. Mol Cell 15:549–558

    PubMed  CAS  Google Scholar 

  • Zhu S, Si ML, Wu H et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin1 (TPM1). J Biol Chem 282:14328–14336

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej SzymaƄski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

SzymaƄski, M., Barciszewski, J. (2010). Noncoding RNAs as Therapeutic Targets. In: Erdmann, V., Barciszewski, J. (eds) RNA Technologies and Their Applications. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12168-5_18

Download citation

Publish with us

Policies and ethics