Skip to main content

The Chemistry of Plant Signalling

  • Chapter
  • First Online:
Plant Communication from an Ecological Perspective

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

This chapter highlights the contribution that chemical sciences, i.e. analytical and synthetic organic chemistry, has made to the understanding of plant–insect interactions from an ecological perspective. This includes a general overview of the approaches and techniques used in the isolation of natural products that play a role in mediating such interactions and recent examples of the important role that chemical techniques have played. It covers plant-derived signals that are both constitutively produced and those induced in response to defence signalling stimuli, including insect attack. It also includes insect-derived elicitors of plant defence. Finally, future prospects of the role of chemical sciences in plant–insect interaction studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adolph S, Poulet SA, Pohnert G (2003) Synthesis and biological activity of α, β, γ, δ unsaturated aldehydes from diatoms. Tetrahedron 59:3003–3008

    Article  CAS  Google Scholar 

  • Agelopoulos N, Pickett JA (1998) Headspace analysis in chemical ecology: effects of different sampling methods on ratios of volatile compounds present in headspace samples. J Chem Ecol 24:1161–1172

    Article  CAS  Google Scholar 

  • Agelopoulos N, Hooper AM, Maniar SM, Pickett JA, Wadhams LJ (1999) A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ. J Chem Ecol 25:1411–1425

    Article  CAS  Google Scholar 

  • Al Abassi S, Birkett MA, Pettersson J, Pickett JA, Woodcock CM (1998) Ladybird beetle odour identified and found to be responsible for attraction between adults. Cell Mol Life Sci 54:876–879

    Article  CAS  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Alborn HT, Jones TH, Stenhagen GS, Tumlinson JH (2000) Identification and synthesis of volicitin and related components from beet armyworm oral secretions. J Chem Ecol 26:203–220

    Article  CAS  Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PEA (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci USA 104:12976–12981

    Article  PubMed  CAS  Google Scholar 

  • Almeras E, Stolz S, Vollenweider S, Reymond P, Mene-Saffrane L, Farmer EE (2003) Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34:205–216

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Hamberg M, Kourtchenko O, Brunnstrom A, McPhail KL, Gerwick WH, Gobel C, Feissner I, Ellerstrom M (2006) Oxylipin profiling of the hypertensive response in Arabidopsis thaliana. J Biol Chem 281:31528–31537

    Article  PubMed  CAS  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier J, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GE, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defence against insects. Proc Natl Acad Sci USA 97:9329–9334

    Article  PubMed  CAS  Google Scholar 

  • Boland W, Gabler A (1989) Biosynthesis of homoterpenes in higher plants. Helv Chim Acta 72:247–253

    Article  CAS  Google Scholar 

  • Boland W, Gabler A, Gilbert M, Feng Z (1998) Biosynthesis of C11 and C16 homoterpenes in higher plants: stereochemistry of the C–C-bond cleavage reaction. Tetrahedron 54:14725–14736

    Article  CAS  Google Scholar 

  • Bonnington LS, Barcelo D, Knepper TP (2003) Utilisation of electrospray time of flight mass spectrometry for solving complex fragmentation patterns: application to benzoxazinone derivatives. J Mass Spectrom 38:1054–1066

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJ, Matthes M, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) Multitrophic interactions involving Arabidopsis thaliana investigated by means of cis-jasmone defence activation. Proc Natl Acad Sci USA 105:4553–4558

    Article  PubMed  CAS  Google Scholar 

  • Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 39:1–15

    Article  PubMed  CAS  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32

    Article  PubMed  Google Scholar 

  • Dabrowska P, Boland W (2007) iso-OPDA: an early precursor of cis-jasmone in plants? Chembiochem 8:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Dicke M (1999) Specificity of herbivore-induced plant defences. In: Chadwick DJ, Goode JA (eds) Insect–plant interactions in induced plant defence. Wiley, New York, pp 43–59

    Google Scholar 

  • Donath J, Boland W (1994) Biosynthesis of acyclic homoterpenes in higher plants parallels steroid hormone metabolism. J Plant Physiol 143:473–478

    Article  CAS  Google Scholar 

  • Donath J, Boland W (1995) Biosynthesis of acyclic homoterpenes: enzyme selectivity and absolute configuration of the nerolidol precursor. Phytochemistry 39:785–790

    Article  CAS  Google Scholar 

  • Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223

    Article  PubMed  CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    Article  CAS  Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Needham PJ, Pulman DA (1973) Potent pyrethroid insecticides from modified cyclopropane acids. Nature 244:456–457

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J, Schmelz EA, Alborn HT, Cardoza Y, Huang J, Tumlinson JH (2003) Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapour-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal Biochem 312:242–250

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  PubMed  CAS  Google Scholar 

  • Gabler A, Boland W, Preiss U, Simon H (1991) Stereochemical studies on homoterpene biosynthesis in higher plants – mechanistic, phylogenetic and ecological aspects. Helv Chim Acta 74:1773–1789

    Article  Google Scholar 

  • Gordon-Weeks R, Pickett JA (2009) Role of natural products in nature: plant–insect interactions. In: Osborn AE, Lanzotti V (eds) Plant-derived natural products. Springer, Berlin, pp 321–347

    Chapter  Google Scholar 

  • Griffiths DC, Pickett JA (1980) Composition of aphid alarm pheromones. J Chem Ecol 6:349–360

    Article  Google Scholar 

  • Hansen TV, Stenstrom Y (2000) A facile formal synthesis of volicitin. Synth Commun 30:2549–2557

    Article  CAS  Google Scholar 

  • Heil M, Lion U, Boland W (2008) Defense-inducing volatiles: in search of the active motif. J Chem Ecol 34:601–604

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Hasewaga K, Shigemori H (2003) Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett 44:5553–5556

    Article  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Sekiguchi M, Hasewaga K, Shigemori H (2005) Oxylipins Arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Kuwahara S, Hasegawa M, Kodama O (2002) Synthesis of the (17R)- and (17S)-isomers of volicitin, an elicitor of plant volatiles contained in the oral secretion of the beet armyworm. Biosci Biotechnol Biochem 66:1591–1596

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Hoskovec M, Boland W (2002) Efficient syntheses of (10E, 12Z, 15Z)-9-oxo- and (9Z, 11E, 15E)-13-oxo-octadecatrienoic acids; two stress metabolites of wounded plants. Tetrahedron 58:3271–3274

    Article  CAS  Google Scholar 

  • Kourtchenko O, Andersson MX, Hamberg M, Brunnstrom A, Gobel C, McPhail KL, Gerwick WH, Fuessner I, Ellerstrom M (2007) Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signalling dependence. Plant Physiol 145:1658–1669

    Article  PubMed  CAS  Google Scholar 

  • Kramell R, Miersch O, Hause B, Ortel B, Parthier B, Wasternack C (1997) Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare) leaves. FEBS Lett 414:197–202

    Article  PubMed  Google Scholar 

  • Krishnamachari VK, Xie X, Zhu S, Wei HX, Pare PW (2007) Efficient synthesis of the insect elicitor volicitin and biologically active analogues. Nat Prod Commun 2:1019–1023

    CAS  Google Scholar 

  • Kunert M, Biedermann A, Koch T, Boland W (2002) Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J Sep Sci 25:677–684

    Article  CAS  Google Scholar 

  • Lauchli R, Boland W (2003) Efficient synthesis of [2H2]-tetrahydrodicranenone and a 3-oxa-analogue resistant against β-oxidation. Tetrahedron 59:149–153

    Article  CAS  Google Scholar 

  • Lauchli R, Schuler G, Boland W (2002) Selective induction of secondary metabolism in Phaseolus lunatus by 6-substituted indanoyl isoleucine conjugates. Phytochemistry 61:807–817

    Article  PubMed  CAS  Google Scholar 

  • Loi RX, Solar MC, Weidenhamer JD (2008) Solid-phase microextraction method for in vivo measurement of allelochemical uptake. J Chem Ecol 34:70–75

    Article  PubMed  CAS  Google Scholar 

  • March RE, Lewars EG, Stadley CJ, Miao XS, Zhao X, Metcalfe CD (2006) A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int J Mass Spectrom 248:61–85

    Article  CAS  Google Scholar 

  • Miersch O, Kramell R, Parthier B, Wasternack C (1999) Structure–activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves. Phytochemistry 50:353–361

    Article  CAS  Google Scholar 

  • Millar JG, Haynes KF (1998) Methods in chemical ecology volume 1: chemical methods. Kluwer, Massachusetts

    Book  Google Scholar 

  • Mithofer A, Maitrejean M, Boland W (2005) Structural and biological diversity of cyclic octadecanoids, jasmonates and mimetics. J Plant Growth Regul 23:170–178

    Google Scholar 

  • Moraes MCB, Birkett MA, Gordon-Weeks R, Smart LE, Martin JL, Pye BJ, Bromilow R, Pickett JA (2008) cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69:9–17

    Article  PubMed  CAS  Google Scholar 

  • Moraes MCB, Laumann RA, Pareja M, Sereno FTPS, Michereff MFF, Birkett MA, Pickett JA, Borges M (2009) Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated by treatment with cis-jasmone. Entom Exp et Appl 131:178–188

    Google Scholar 

  • Mueller MJ, Mene-Saffrane L, Grun C, Karg K, Farmer EE (2006) Oxylipin analysis methods. Plant J 45:472–489

    Article  PubMed  CAS  Google Scholar 

  • Nakajyo H, Hisamatsu Y, Sekiguchi M, Goto H, Hasewaga K, Shigemori H (2006) Arabidopside F, a new oxylipin from Arabidopsis thaliana. Heterocycles 69:295–301

    Article  CAS  Google Scholar 

  • Oliver JE, Doss RP, Williamson RT, Carney JR, DeVillbriss ED (2000) Bruchins – mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae. Tetrahedron 56:7633–7641

    Article  CAS  Google Scholar 

  • Oliver JE, Doss RP, Marquez B, DeVillbris ED (2002) Bruchins, plant mitogens from weevils: structural requirements for activity. J Chem Ecol 28:2503–2513

    Article  PubMed  CAS  Google Scholar 

  • Pare PW, Alborn HT, Tumlinson JH (1998) Concerted biosynthesis of an insect elicitor of plant volatiles. Proc Natl Acad Sci USA 95:13971–13975

    Article  PubMed  CAS  Google Scholar 

  • Pickett JA (1990) Gas chromatography-mass spectrometry in insect pheromone identification: three extreme case histories. In: McCaffrey ID, Wilson AR (eds) Chromatography and isolation of insect hormones and pheromones. Plenum, New York, pp 281–288

    Google Scholar 

  • Pickett JA, Birkett MA, Woodcock CM, Zhou JJ (2009) Scents and sex. The Biochemist, 1–6

    Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    Article  PubMed  CAS  Google Scholar 

  • Pohnert G, Jung V, Haukioja E, Lempa K, Boland W (1999a) New fatty acid amides from regurgitant of Lepidopteran (Noctuidae, Geometridae) caterpillers. Tetrahedron 55:11275–11280

    Article  CAS  Google Scholar 

  • Pohnert G, Koch T, Boland W (1999b) Synthesis of volicitin: a novel three-component\wittig approach to chiral 17-hydroxylinolenic acid. Chem Commun 12:1087–1088

    Article  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Rieder J, Lirk P, Ebenbichler C, Gruber G, Prazeller P, Lindinger W, Amman A (2001) Analysis of volatile organic compounds: possible applications in metabolic disorders and cancer screening. Wien Klin Wochenschr 13:181–185

    Google Scholar 

  • Riter LS, Meurer EC, Cotte-Rodriguez I, Eberlin MN, Cooks RG (2003) Solid phase micro-extraction in a miniature ion trap mass spectrometer. Analyst 128:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Yoshinaga N, Fujisaki K, Nishida R, Kuwahara Y, Mori N (2006) Absolute configuration of volicitin from the regurgitant of Lepidopteran caterpillers and biological activity of volicitin-related compounds. Biosci Biotech Biochem 70:2185–2190

    Article  CAS  Google Scholar 

  • Scascighini N, Mattiacci L, D’Alessandro M, Hern A, Rott A, Rott AS, Dorn S (2005) New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104

    Article  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH (2003) Simultaneous analysis of phytohormones, phytotoxins and volatile organic compounds. Proc Natl Acad Sci USA 100:10552–10557

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Tumlinson JH, Block A, Alborn HT (2004) The use of vapour phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J 39:790–808

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH, Teal PEA (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci USA 106:653–657

    Article  PubMed  CAS  Google Scholar 

  • Schuler G, Wasternack C, Boland W (1999) Synthesis of 6-azido-1-oxo-indan-4-oyl isoleucine; a photoaffinity approach to plant signalling. Tetrahedron 55:3897–3904

    Article  CAS  Google Scholar 

  • Schultz S, Weissbecker B, Hummel HE (1996) Biosensor for volatiles released by damaged plants. Biosens Bioelectron 11:427–433

    Article  Google Scholar 

  • Schultz S, Weissbecker B, Koch UT, Hummel HE (1999) Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron 14:221–228

    Article  Google Scholar 

  • Schultz S, Schoning MJ, Schroth P, Malkoc U, Weissbecker B, Kordos P, Luth H, Hummel HE (2000) An insect-based BioFET as a bioelectronic nose. Sensors Actuators B 65:291–295

    Article  Google Scholar 

  • Schulze B, Lauchli R, Mekem Sonwa M, Schmidt A, Boland W (2006) Profiling of structurally labile oxylipins in plants by in situ derivatisation with pentafluorobenzyl hydroxylamine. Anal Biochem 348:269–283

    Article  PubMed  CAS  Google Scholar 

  • Schulze B, Dabrowska P, Boland W (2007) Rapid enzymatic isomerisation of 12-oxophytodienoic acid in the gut of Lepidopteran larvae. Chembiochem 8:208–216

    Article  PubMed  CAS  Google Scholar 

  • Schwartzberg EG, Kunert G, Stephan C, David A, Rose USR, Gershenzon J, Boland W, Weisser W (2008) Real-time analysis of alarm pheromone emission by the pea aphid (Acyrthosiphon pisum) under predation. J Chem Ecol 34:76–81

    Article  PubMed  CAS  Google Scholar 

  • Soini HA, Bruce KE, Wiesler D, David F, Sandra P, Novotny M (2005) Stir bar sorptive extraction: a new quantitative and comprehensive sampling technique for determination of chemical signal profiles biological media. J Chem Ecol 31:377–392

    Article  PubMed  CAS  Google Scholar 

  • Spiteller D, Boland W (2003) N-(15, 16-Dihydroxylinoleoyl)-glutamine and N-(15, 16-epoxylinoleoyl)-glutamine isolated from oral secretions of lepidopteran larvae. Tetrahedron 59:135–139

    Article  CAS  Google Scholar 

  • Steeghs M, Pal Bais H, de Ouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    Article  PubMed  CAS  Google Scholar 

  • Takats Z, Wisman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  PubMed  CAS  Google Scholar 

  • Talaty N, Takats Z, Cooks RG (2005) Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst 130:1624–1633

    Article  PubMed  CAS  Google Scholar 

  • Todd JF, Barber SJ, Wright IP, Morgan GH, Morse AD, Sheridan S, Leese MR, Maynard J, Evans ST, Pillinger CT, Drummond DL, Heys SC, Huq SE, Kent BJ, Sawyer EC, Whalley MS, Waltham NR (2007) Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission. J Mass Spectrom 42:1–10

    Google Scholar 

  • Turlings TCJ, Alborn HT, Loughrin JH, Tumlinson JH (2000) Volicitin, an elicitor of maize volatiles in oral secretion of Spodoptera exigua: isolation and bioactivity. J Chem Ecol 26:189–202

    Article  CAS  Google Scholar 

  • Turlings TCJ, Davison AC, Tamo C (2004) A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trapping. Physiol Entomol 29:45–55

    Article  Google Scholar 

  • Vollenweider S, Weber H, Stolz S, Chetelat A, Farmer EE (2000) Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24:467–476

    Article  PubMed  CAS  Google Scholar 

  • Von Dahl CC, Havecker M, Schlog R, Baldwin IT (2006) Caterpiller-elicited methanol emission: a new signal in plant–herbivore interactions? Plant J 46:948–960

    Article  Google Scholar 

  • Weber H, Chetelat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37:877–888

    Article  PubMed  CAS  Google Scholar 

  • Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, Hardie J, Pickett JA (2008) Identification of volatile compounds used in host location by the black-bean aphid, Aphis fabae. J Chem Ecol 34:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Wei HX, Truitt CL, Pare PW (2003) Synthesis of hydroxyl-substituted unsaturated fatty acids and the amino-acid insect derivative volicitin. Tetrahedron Lett 44:831–833

    Article  CAS  Google Scholar 

  • Weidenhamer J (2005) Biomimetic measurement of allelochemical dynamics in the rhizosphere. J Chem Ecol 31:221–236

    Article  Google Scholar 

  • Weidenhamer JD (2007) New approaches to analyse allelochemicals in the soil. Allelopath J 19:135–142

    Google Scholar 

  • Zerbe P, Weiler EW, Schaller F (2007) Preparative enzymatic solid phase synthesis of cis(+)-12-oxo-phytodienoic acid – physical interaction of AOS and AOC is not necessary. Phytochemistry 68:229–236

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZP, Krumm T, Baldwin IT (1997) Structural requirements of jasmonates and mimics for nicotine induction in Nicotiana sylvestris. J Chem Ecol 23:2777–2789

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Birkett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birkett, M.A. (2010). The Chemistry of Plant Signalling. In: Baluška, F., Ninkovic, V. (eds) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12162-3_2

Download citation

Publish with us

Policies and ethics