Skip to main content

Exploiting Plant Signals in Sustainable Agriculture

  • Chapter
  • First Online:
Plant Communication from an Ecological Perspective

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plants respond to chemical signals (semiochemicals) that are associated with insect or pathogen attack by modifying their metabolism accordingly so that defence pathways are switched on or primed. Once the relevant semiochemicals or analogues are identified, these signals can be artificially applied to achieve similar effects. Such plant activator agrochemicals represent an entirely different approach from the one traditionally used by the agrochemical industry of deploying pesticide molecules to kill pests. These chemicals do not have direct effects on pests and diseases but upregulate plant defence genes that increase plant resistance to attack. Plant activators are compatible with integrated pest management (IPM) systems and even enhance biocontrol techniques by promoting plant attractiveness to natural enemies of plant pests, as natural enemies of pests prefer induced plants. The plant defence traits activated are often complex relying on the expression of many genes, which makes it harder for pests to adapt to them. Current practise and future prospects are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal AA (1998) Induced responses to herbivory and increased plant performance. Science 279:1201–1202

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A et al (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT et al (2006) Volatile signaling in plant–plant interactions: “Talking trees” in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Bautista-Banos S et al (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118

    Article  CAS  Google Scholar 

  • Beale MH et al (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci USA 103:10509–10513

    Article  PubMed  CAS  Google Scholar 

  • Beckers JM, Contrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Article  PubMed  Google Scholar 

  • Birkett MA et al (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    Article  PubMed  CAS  Google Scholar 

  • Boughton AJ et al (2006) Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomol Exp Appl 120:175–188

    Article  CAS  Google Scholar 

  • Bruce TJ, Pickett JA (2007) Plant defence signalling induced by biotic attacks. Curr Opin Plant Biol 10:387–392

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA et al (2003) cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Manag Sci 59:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Chamberlain K et al (2006) Diel periodicity in the production of green leaf volatiles by wild and cultivated host plants of stemborer moths, Chilo partellus and Busseola fusca. J Chem Ecol 32:565–577

    Article  PubMed  CAS  Google Scholar 

  • Cheng AX et al (2007) The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68:1632–1641

    Article  PubMed  CAS  Google Scholar 

  • Conrath U et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Cook SM et al (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J et al (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Dicke M, Dijkman H (1992) Induced defense in detached uninfested plant-leaves – effects on behavior of herbivores and their predators. Oecologia 91:554–560

    Article  Google Scholar 

  • Dudareva N, Negre F (2005) Practical applications of research into the regulation of plant volatile emission. Curr Opin Plant Biol 8:113–118

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J et al (2007) Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Mol Plant Microbe Interact 20:707–716

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication – airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Gardner SN et al (1999) Strategies to delay the evolution of resistance in pests: dose rotations and induced plant defenses. Asp Appl Biol 53:189–196

    Google Scholar 

  • Glinwood R et al (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:261–274

    Article  PubMed  CAS  Google Scholar 

  • Glinwood R et al (2004) Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol Entomol 29:188–195

    Article  Google Scholar 

  • Hassanali A et al (2008) Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc Lond B Biol Sci 363:611–621

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  PubMed  CAS  Google Scholar 

  • Herman MAB et al (2008) Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes. Phytopathology 98:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Hodge S et al (2005) Application of DL-β-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Bull Entomol Res 95:449–455

    Article  PubMed  CAS  Google Scholar 

  • Jakab G et al (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  PubMed  CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628

    Article  PubMed  CAS  Google Scholar 

  • Kamal A et al (2008) Enhanced onion resistance against stemphylium leaf blight disease, caused by Stemphylium vesicarium, by di-potassium phosphate and benzothiadiazole treatments. Plant Pathol J 24:171–177

    Article  CAS  Google Scholar 

  • Karban R et al (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Kessler A et al (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  PubMed  Google Scholar 

  • Khan ZR et al (1997) Intercropping increases parasitism of pests. Nature 388:631–632

    Article  CAS  Google Scholar 

  • Khan ZR et al (2008a) Economic performance of the ‘push–pull’ technology for stemborer and Striga control in smallholder farming systems in western Kenya. Crop Prot 27:1084–1097

    Article  Google Scholar 

  • Khan ZR et al (2008b) Chemical ecology and conservation biological control. Biol Control 45:210–224

    Article  CAS  Google Scholar 

  • Lewis WJ et al (1997) A total system approach to sustainable pest management. Proc Natl Acad Sci USA 94:12243–12248

    Article  PubMed  CAS  Google Scholar 

  • Lou YG et al (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol 31:1985–2002

    Article  PubMed  CAS  Google Scholar 

  • Loughrin JH et al (1995) Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J Chem Ecol 21:1217–1227

    Article  CAS  Google Scholar 

  • Louws FJ, Wilson M, Campbell HL, Cuppels DA, Jones JB, Shoemaker PH, Sahin F, Miller SA (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  CAS  Google Scholar 

  • Lucas JA (1999) Plant immunisation: from myth to SAR. Pest Sci 55:193–196

    Article  CAS  Google Scholar 

  • Lyon GD, Reglinski T, Newton AC (1995) Novel disease control compounds: the potential to ‘immunise’ plants against infection. Plant Pathol 44:407–427

    Article  CAS  Google Scholar 

  • Ninkovic V et al (2002) Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomol Exp Appl 102:177–182

    Article  Google Scholar 

  • Ninkovic V, Ahmed E, Glinwood R, Pettersson J (2003) Effects of two types of semiochemicals on population development of the Bird Cherry Oat Aphid, Rhopalosiphum padi (L.) a in barely crop. Agric For Entomol 5:27–33

    Article  Google Scholar 

  • Paré PW et al (2005) Elicitors and priming agents initiate plant defense responses. Photosyn Res 85:149–159

    Article  PubMed  Google Scholar 

  • Pettersson J et al (1994) Winter host component reduces colonization by bird-cherry oat aphid, Rhopalosiphum-Padi (L) (Homoptera, Aphididae), and other aphids in cereal fields. J Chem Ecol 20:2565–2574

    Article  CAS  Google Scholar 

  • Pickett JA et al (2007) cis-Jasmone as allelopathic agent in inducing plant defence. Allelopath J 19:109–117

    Google Scholar 

  • Poelman EH et al (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365

    Article  PubMed  CAS  Google Scholar 

  • Schnee C et al (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Schuler G et al (2004) Coronalon: a powerful tool in plant stress physiology. FEBS Lett 563:17–22

    Article  PubMed  CAS  Google Scholar 

  • Shiojiri K et al (2006) Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676

    Article  PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  PubMed  CAS  Google Scholar 

  • Stout MJ et al (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689

    Article  PubMed  CAS  Google Scholar 

  • Thaler JS et al (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    Article  CAS  Google Scholar 

  • Thaler JS (1999a) Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environm Entomol 28:30–37

    CAS  Google Scholar 

  • Thaler JS (1999b) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688

    Article  CAS  Google Scholar 

  • Ton J et al (2005) Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    Article  PubMed  CAS  Google Scholar 

  • Ton J et al (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  PubMed  CAS  Google Scholar 

  • Turlings TC, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427

    Article  PubMed  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • van Hulten M et al (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed  Google Scholar 

  • van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy? Crop Prot 19:375–384

    Article  Google Scholar 

  • van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    Article  PubMed  Google Scholar 

  • von Rad U et al (2005) Evaluation of natural and synthetic stimulants of plant immunity by microarray technology. New Phytol 165:191–202

    Google Scholar 

  • Whitfield J (2001) Making crops cry for help. Nature 410:736–737

    Article  PubMed  CAS  Google Scholar 

  • Yang KY, Blee KA, Zhang S, Anderson AJ (2002) Oxycom treatment suppresses Pseudomonas syringae infection and activates a mitogen-activated protein kinase pathway in tobacco. Physiol Mol Plant Pathol 61:249–256

    Article  CAS  Google Scholar 

  • Zhu-Salzman K et al (2008) Arthropod-inducible proteins: Broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby J. A. Bruce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruce, T.J.A. (2010). Exploiting Plant Signals in Sustainable Agriculture. In: Baluška, F., Ninkovic, V. (eds) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12162-3_12

Download citation

Publish with us

Policies and ethics