Skip to main content

Positioning by resection methods

  • Chapter
  • First Online:
Algebraic Geodesy and Geoinformatics

Abstract

In Chap. 12, ranging method for positioning was presented where distances were measured to known targets. In this chapter, an alternative positioning technique which uses direction measurements as opposed to distances is presented. This positioning approach is known as the resection. Unlike in ranging where measured distances are affected by atmospheric refraction, resection methods have the advantage that the measurements are angles or directions which are not affected by refraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Ansermet A (1910) Eine Auflösung des Rückwärtseinschneidens. Zeitschrift des Vereins Schweiz. Konkordatsgeometer, Jahrgang 8, pp. 88–91

    Google Scholar 

  2. Awange JL (2002a) Groebner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms-adjustment of nonlinear GPS/LPS observations. Ph.D. thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Germany. Technical Reports, Report Nr. 2002 (1)

    Google Scholar 

  3. Awange JL (2002b) Groebner basis solution of planar resection. Survey Review 36: 528–543

    Google Scholar 

  4. Awange JL, Grafarend EW (2003b) Groebner basis solution of the three-dimensional resection problem (P4P). Journal of Geodesy, 77: 327–337

    Article  Google Scholar 

  5. Awange JL, Grafarend EW (2003c) Multipolynomial resultant solution of the threedimensional resection problem (P4P). Bollettino di Geodesia e Science Affini 62: 79–102

    Google Scholar 

  6. Awange JL, Grafarend EW (2003d) Explicit solution of the overdetermined three-dimensional resection problem. Journal of Geodesy 76: 605–616

    Article  Google Scholar 

  7. Awange JL, Fukuda Y, Takemoto S (2004a) B. Strumfel’s resultant solution of planar resection problem. Allgemeine Vermessungs-Nachrichten 111(6): 214–219

    Google Scholar 

  8. Awange JL, Grafarend EW (2005) Solving Algebraic Computational Problems in Geodesy and Geoinformatics. Springer, Berlin

    Google Scholar 

  9. Bähr HG (1991) Einfach überbestimmtes ebenes Einschneiden, differentialgeometrisch analysiert. Zeitschrift für Vermessungswesen 116: 545–552

    Google Scholar 

  10. Bil WL (1992) Sectie en Projectie. NGT (Dutch Geodetic Magazine) Geodesia 92-10: 405–411

    Google Scholar 

  11. Bock W (1959) Mathematische und geschichtliche Betrachtungen zum Einschneiden. Schriftenreihe Niedersaechsisches Landesvermessungsamt. Report 9, Hannover

    Google Scholar 

  12. Brandstätter G (1974) Notiz zur analytischen Lösung des ebenen Rückwärtsschnittes. österreichische Zeitschrift für Vermessungswesen 61: 34–136

    Google Scholar 

  13. Chrystal G (1964) Textbook of Algebra (Vol. 1). Chelsea, New York

    Google Scholar 

  14. Finsterwalder S, Scheufele W (1937) Das Rückwartseinschneiden im Raum. Sebastian Finsterwalder zum 75 Geburtstage, pp. 86–100, Verlag Hebert Wichmann, Berlin

    Google Scholar 

  15. Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for modell fitting with application to image analysis and automated cartography. Communications of the ACM 24: 381–395

    Article  Google Scholar 

  16. Gordon SJ, Lichti DD (2004) Terrestrial laser scanners with a narrow field of view: the effect on 3D resection solutions. Survey Review 37:448–468

    Google Scholar 

  17. Gotthardt E (1940) Zur Unbestimmtheit des räumlichen Rückwärtseinschnittes, Mitteilungen der Ges. f. Photogrammetry e.V., Jänner 1940, Heft 5

    Google Scholar 

  18. Gotthardt E (1974) Ein neuer gefährlicher Ort zum räumlichen Rückwärtseinschneiden, Bildm. u. Luftbildw.

    Google Scholar 

  19. Grafarend EW (1989) Photogrammetrische Positionierung. Festschrift für Prof. Dr.-Ing. Dr. h.c Friedrich Ackermann zum 60. Geburtstag, Institut für Photogrammetrie, Univerität Stuttgart, Heft 14, pp.44-55, Stuttgart

    Google Scholar 

  20. Grafarend EW, Kunz J (1965) Der Rückwärtseinschnitt mit dem Vermessungskreisel. Bergbauwissenschaften 12: 285–297

    Google Scholar 

  21. Grafarend EW, Shan J (1997b) Closed form solution of the twin P4P or the combined three dimensional resection-intersection problem in terms of Möbius barycentric coordinates. Journal of Geodesy 71: 232–239

    Article  Google Scholar 

  22. Grafarend EW, Lohse P, Schaffrin B (1989) Dreidimensionaler Rückwärtsschnitt. Zeitschrift für Vermessungswesen 114: 61–67,127–137,172–175,225–234,278–287

    Google Scholar 

  23. Grunert JA (1841) Das Pothenotsche Problem in erweiterter Gestalt; nebst Bemerkungen über seine Anwendungen in der Geodäsie. Grunerts Archiv für Mathematik und Phsyik 1 pp. 238–241

    Google Scholar 

  24. Hammer E (1896) Zur graphischen Ausgleichung beim trigonometrischen Einschneiden von Punkten. Optimization methods and softwares 5: 247–269

    Google Scholar 

  25. Haralick RM, Lee C, Ottenberg K, Nölle M (1991) Analysis and solution of the three point perspective pose estimation problem. Proc. IEEE Org. on Computer Vision and Pattern Recognition, pp. 592–598

    Google Scholar 

  26. Haralick RM, Lee C, Ottenberg K, Nölle M (1994) Review and analysis of solution of the three point perspective pose estimation problem. International Journal of Computer Vision 13 3: 331–356

    Article  Google Scholar 

  27. Horaud R, Conio B, Leboulleux O (1989) An analytical solution for the perspective 4-point problem. Computer Vision, Graphics and Image Processing 47: 33–44

    Article  Google Scholar 

  28. Kahmen H, Faig W (1988) Surveying. Walter de Gruyter, Berlin

    Google Scholar 

  29. Kapur D, Saxena T, Yang L (1994) Algebraic and geometric reasoning using Dixon resultants. In ACM ISSAC 94, International Symposium on Symbolic and Algebraic Computation, Oxford, England, July 1994, 99-107.

    Google Scholar 

  30. Killian K (1990) Der gefährliche Ort des überbestimmten räumlichen Rückwärtseinschneidens. öst. Zeitschrift für Vermessungswesen und Photogrammetry 78: 1–12

    Google Scholar 

  31. Lewis RH (2002) Using the Dixon resultant on big problems. in CBMS Conference, Texas A&M University, http://www.math.tamu.edu/conferences/cbms/abs.html [Accessed 27 Aug 2008]

  32. Lewis RH (2008) Heuristics to Accelerate the Dixon Resultant. Mathematics and Computers in Simulation, 77, 4:400-407.

    Article  Google Scholar 

  33. Linnainmaa S, Harwood D, Davis LS (1988) Pose determination of a three-dimensional object using triangle pairs. IEEE transaction on pattern analysis and Machine intelligence 105: 634–647

    Article  Google Scholar 

  34. Lohse P (1990) Dreidimensionaler Rückwärtsschnit. Ein Algorithmus zur Streckenberechnung ohne Hauptachsentransformation. Zeitschrift für Vermessungswesen 115: 162–167

    Google Scholar 

  35. Manocha D (1994a) Algorithms for computing selected solutions of polynomial equations. Extended abstract appearing in the proceedings of the ACM ISSAC 94.

    Google Scholar 

  36. Manocha D (1994b) Computing selected solutions of polynomial equations. Proceedings of the International Sypmosium on Symbolic and Algebraic Computations ISSAC, July 20-22, pp.1-8, Oxford

    Google Scholar 

  37. Manocha D (1994c) Solving systems of polynomial equations. IEEE Computer Graphics and application 14: 46–55

    Article  Google Scholar 

  38. Manocha D, Canny J (1991) Efficient techniques for multipolynomial resultant algorithms. Proceedings of the International Symposium on Symbolic Computations, July 15-17, 1991, pp. 86–95, Bonn

    Google Scholar 

  39. Merritt EL (1949) Explicit Three-point resection in space. Phot. Eng. 15: 649–665

    Google Scholar 

  40. Müller FJ (1925) Direkte (Exakte) Lösungen des einfachen Rückwarscnittseinschneidens im Raum. 1 Teil. Zeitschrift für Vermessungswesen 37: 249–255, 265–272, 349–353, 365–370, 569–580

    Google Scholar 

  41. (2002) A fast algorithm implemented in Mathematica provides one-step elimination of a block of unknowns from a system of polynomial equations, Wolfram Library Archive, MathSource, http://library.wolfram.com/infocenter/MathSource/2597/ [Accessed 27 Aug 2008]

  42. Runge C (1900) Graphische Ausgleichung beim Rückwätseinchneiden. Zeitschrift für Vermessungswesen 29: 581–588

    Google Scholar 

  43. Van Mierlo J (1988) Rückwärtschnitt mit Streckenverhältnissen. Algemain Vermessungs Nachrichten 95: 310–314

    Google Scholar 

  44. Werkmeister P (1916) Trigonometrische Punktbestimmung durch einfaches Einschneiden mit Hilfe von Vertikalwinkeln. Zeitschrift für Vermessungswesen 45: 248–251

    Google Scholar 

  45. Werkmeister P (1920) Über die Genauigkeit trigonometrischer Punktbestimmungen. Zeitschrift für Vermessungswesen 49: 401–412,433–456

    Google Scholar 

  46. Werner D (1913) Punktbestimmung durch Vertikalwinkelmessung. Zeitschrift für Vermessungswesen 42: 241–253

    Google Scholar 

  47. Wild F (2001) Test an der Geschlossenen Lösung des “Twin P4P-Problems”: Dreidimensionaler Vorwärts- und Rückwärtsschnitt. Studienarbeit, Geodetic Institute, Stuttgart University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L., Grafarend, E.W., Paláncz, B., Zaletnyik, P. (2010). Positioning by resection methods. In: Algebraic Geodesy and Geoinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12124-1_13

Download citation

Publish with us

Policies and ethics