Skip to main content

Electroretinographic Testing in Infants and Children

  • Chapter
  • First Online:
Pediatric Retina

Abstract

Ever since Dewar [1] first recorded electrical potentials from the human eye in 1877, electroretinography (ERG) has held promise as an objective measure of retinal function. Over the intervening years, it has become possible to relate the components of full-field, focal, multifocal, and pattern ERGs to their cellular origins within the retina. Thus, each of these tests can provide specific information about retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dewar, J.: The physiologic action of light. Nature 15, 433–435 (1877)

    Article  Google Scholar 

  2. Granit, R.: The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J. Physiol. 77, 207–239 (1933)

    PubMed  CAS  Google Scholar 

  3. Noell, W.K.: The origin of the electroretinogram. Am. J. Ophthalmol. 38, 78 (1954)

    PubMed  CAS  Google Scholar 

  4. Brown, K.T., Wiesel, T.N.: Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J. Physiol. 158, 257–280 (1961)

    PubMed  CAS  Google Scholar 

  5. Brown, K.T.: The electroretinogram; its components and their origins. Vision Res. 8, 633 (1968)

    Article  PubMed  CAS  Google Scholar 

  6. Miller, R.F., Dowling, J.E.: Intracellular responses of the Muller (glial) cells of mudpuppy retina; their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323 (1970)

    PubMed  CAS  Google Scholar 

  7. Marmor, M.F., et al.: Standard for clinical electroretinography. Arch. Ophthalmol. 107, 816–819 (1989)

    Article  Google Scholar 

  8. Marmor, M.F., et al.: Standard for clinical electroretinography (2004 update). Doc. Ophthalmol. 108, 107–114 (2004)

    Article  PubMed  Google Scholar 

  9. Yonemura, D.: The oscillatory potential of the electroretinogram. Acta Soc. Ophthalmol. Jpn. 66, 1566–1584 (1963)

    Google Scholar 

  10. Speros, P., Price, J.: Oscillatory potentials. History, techniques and potential use in the evaluation of disturbances of retinal circulation. Surv. Ophthalmol. 25, 237 (1981)

    Article  PubMed  CAS  Google Scholar 

  11. MacKay, C.J., Gouras, P.: Light-adaptation augments the amplitude of the human cone ERG. Invest. Ophthalmol. Vis. Sci 26(suppl), 323 (1985)

    Google Scholar 

  12. Birch, D.G., et al.: Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability. Arch. Ophthalmol. 120(8), 1045–1051 (2002)

    Article  PubMed  Google Scholar 

  13. Mactier, H., Dexter, J.D., Hewett, J.E.: The electroretinogram in preterm infants. J. Pediatr. 113, 607–612 (1988)

    Article  PubMed  CAS  Google Scholar 

  14. Berezovsky, A., et al.: Standard full-field electroretinography in healthy preterm infants. Doc. Ophthalmol. 107, 243–249 (2003)

    Article  PubMed  Google Scholar 

  15. Birch, E.E., et al.: Retinal and cortical function of very low birth weight infants at 36 and 57 weeks postconception. Clin. Vis. Sci. 5(4), 363–373 (1990)

    Google Scholar 

  16. Mets, M., Smith, V.C.: Postnatal retinal development as measured by the electroretinogram in premature infants. Doc. Ophthalmol. 90, 111–127 (1995)

    Article  PubMed  CAS  Google Scholar 

  17. Birch, D.G., Anderson, J.L.: Standardized full-field electroretinography. Normal values and their variation with age. Arch. Ophthalmol. 110(11), 1571–1576 (1992)

    Article  PubMed  CAS  Google Scholar 

  18. Birch, D.G., et al.: Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest. Ophthalmol. Vis. Sci. 33(8), 2365–2376 (1992)

    PubMed  CAS  Google Scholar 

  19. Westall, C.A., Panton, C.M., Levin, A.V.: Time courses for maturation of electroretinogram responses from infancy to adulthood. Doc. Ophthalmol. 96, 355–379 (1999)

    Article  CAS  Google Scholar 

  20. Fulton, A.B., Hansen, R.M., Westall, C.A.: Development of ERG responses: the ISCEV rod, maximal and cone responses in normal subjects. Doc. Ophthalmol. 107, 235–241 (2003)

    Article  PubMed  Google Scholar 

  21. Birch, D.G., et al.: The relationship between rod perimetric thresholds and full-field rod ERGs in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 28(6), 954–965 (1987)

    PubMed  CAS  Google Scholar 

  22. Brown, A.M.: Development of visual sensitivity to light and color in human infants: a critical review. Vision Res. 30, 1159–1188 (1990)

    Article  PubMed  CAS  Google Scholar 

  23. Powers, M.K., Schneck, M.S., Teller, D.Y.: Spectral sensitivity of human infants at absolute threshold. Vision Res. 21, 1005–1016 (1981)

    Article  PubMed  CAS  Google Scholar 

  24. Hansen, R.M., Fulton, A.B., Harris, S.J.: Background adaptation in human infants. Vision Res. 26, 771–779 (1986)

    Article  PubMed  CAS  Google Scholar 

  25. Hamer, R.D., Schneck, M.E.: Spatial summation in dark-adapted human infants. Vision Res. 24, 77–85 (1984)

    Article  PubMed  CAS  Google Scholar 

  26. Fulton, A.B., Hansen, R.M.: Background adaptation in human infants: analyses of b-wave responses. Doc. Ophthalmol. Proc. Ser. 31, 191–197 (1982)

    Google Scholar 

  27. Hood, D.C., Birch, D.G., Birch, E.E.: Use of models to improve hypothesis delineation: a study of infant electroretinography. In: Simons, K. (ed.) Early Visual Development, Normal and Abnormal, pp. 517–535. Oxford University Press, New York (1993)

    Google Scholar 

  28. Hood, D.C., Birch, D.G.: The a-wave of the human electroretinogram and rod receptor function. Invest. Ophthalmol. Vis. Sci. 31, 2070–2081 (1990)

    PubMed  CAS  Google Scholar 

  29. Hood, D.C., Birch, D.G.: The relationship between models of receptor activity and the a-wave of the human ERG. Clin. Vis. Sci. 5, 293 (1990)

    Google Scholar 

  30. Breton, M.E., Montzka, D.P.: Empiric limits of rod photocurrent component underlying a-wave response in the electroretinogram. Doc. Ophthalmol. 79, 337–361 (1992)

    Article  PubMed  CAS  Google Scholar 

  31. Cideciyan, A.V., Jacobson, S.G.: Negative electroretinograms in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 34(12), 3253–3263 (1993)

    PubMed  CAS  Google Scholar 

  32. Hood, D.C., Birch, D.G.: Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity. Vision Res. 33(12), 1605–1618 (1993)

    Article  PubMed  CAS  Google Scholar 

  33. Baylor, D.A., Nunn, B.J., Schnapf, J.L.: The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol. 357, 575–607 (1984)

    PubMed  CAS  Google Scholar 

  34. Kraft, T.W., Schneeweis, D.M., Schnapf, J.L.: Visual transduction in human rod photoreceptors. J. Physiol. 464, 747–765 (1993)

    PubMed  CAS  Google Scholar 

  35. Hendrickson, A., Drucker, D.: The development of parafoveal and rod-ring human retina. Behav. Brain Res. 49, 21–31 (1992)

    Article  PubMed  CAS  Google Scholar 

  36. Packer, O., Hendrickson, A.E., Curcio, C.A.: Developmental redistribution of photoreceptors across the Macaca nemestrina (pigtail macaque) retina. J. Comp. Neurol. 298, 472–493 (1990)

    Article  PubMed  CAS  Google Scholar 

  37. Curcio, C.A., Hendrikson, A.: Organization and development of the primate photoreceptor mosaic. In: Osborn, N.N., Chader, G.J. (eds.) Progress in Retinal Research), pp. 90–120. Pergamon, Oxford (1991)

    Google Scholar 

  38. Fulton, A.B., et al.: The quantity of rhodopsin in young human eyes. Curr. Eye Res. 10, 977–982 (1991)

    Article  PubMed  CAS  Google Scholar 

  39. Dodge, J., et al.: Rhodopsin in immature rod outer segments. Invest. Ophthalmol. Vis. Sci. 37, 1951–1956 (1996)

    PubMed  CAS  Google Scholar 

  40. Lee, R.H., Lieberman, B.S., Lolley, R.N.: Retinal accumulation of the phosducin/T and transducin complexes in developing normal mice and in mice and dogs with inherited retinal degeneration. Exp. Eye Res. 51, 325–333 (1990)

    Article  PubMed  CAS  Google Scholar 

  41. Berson, E.L., Gouras, P., Hoff, M.: Temporal aspects of the electroretinogram. Arch. Ophthalmol. 81(2), 207–214 (1969)

    Article  PubMed  CAS  Google Scholar 

  42. Berson, E.L., et al.: Rod and cone responses in sex-linked retinitis pigmentosa. Arch. Ophthalmol. 81(2), 215–225 (1969)

    Article  PubMed  CAS  Google Scholar 

  43. Berson, E.L., Kanters, L.: Cone and rod responses in a family with recessively inherited retinitis pigmentosa. Arch. Ophthalmol. 84(3), 288–297 (1970)

    Article  PubMed  CAS  Google Scholar 

  44. Berson, E.L., Gouras, P., Gunkel, R.D.: Rod responses in retinitis pigmentosa, dominantly inherited. Arch. Ophthalmol. 80(1), 58–67 (1968)

    Article  PubMed  CAS  Google Scholar 

  45. Berson, E.L.: Hereditary retinal diseases; classification with the full-field electroretinogram. In: Lawwill, T. (ed.) ERG, VER and Psychophysics (XIVth ISCERG Symposium, May 1976, Louisville, KY) W. Junk: The Hague (1977)

    Google Scholar 

  46. Berson, E.L., Rosen, J.B., Simonoff, E.A.: Electroretinographic testing as an aid in detection of carriers of X- chromosome-linked retinitis pigmentosa. Am. J. Ophthalmol. 87(4), 460–468 (1979)

    PubMed  CAS  Google Scholar 

  47. Fishman, G.A., Cunha-Vaz, J.E.: Carriers of X-linked recessive retinitis pigmentosa: investigation by vitreous fluorophotometry. Int. Ophthalmol. 4(1–2), 37–44 (1981)

    Article  PubMed  CAS  Google Scholar 

  48. Berson, E.L., et al.: Natural course of retinitis pigmentosa over a three-year interval. Am. J. Ophthalmol. 99(3), 240–251 (1985)

    PubMed  CAS  Google Scholar 

  49. Birch, D.G., Anderson J.L. Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod degeneration. In: Vision Science and its Applications. OSA Technical Digest Series, vol. 3, pp. 334–337, Optical Society of America, Washington, D.C. (1993)

    Google Scholar 

  50. Kohl, S., et al.: Total colour blindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat. Genet. 19(3), 257–259 (1998)

    Article  PubMed  CAS  Google Scholar 

  51. Wissinger, B., et al.: CNGA3 mutations in hereditary cone photoreceptor disorders. Am. J. Hum. Genet. 69(4), 722–737 (2001)

    Article  PubMed  CAS  Google Scholar 

  52. Sundin, O.H., et al.: Genetic basis of total colour blindness among the Pingelapese islanders. Nat. Genet. 25(3), 289–293 (2000)

    Article  PubMed  CAS  Google Scholar 

  53. Miyake, Y., et al.: Congenital stationary night blindness with negative electroretinogram. Arch. Ophthalmol. 104, 1013–1020 (1986)

    Article  PubMed  CAS  Google Scholar 

  54. Miyake, Y., et al.: Characteristic ERG-flicker anomaly in incomplete congenital stationary night blindness. Invest. Ophthalmol. Vis. Sci. 28(11), 1816–1823 (1987)

    PubMed  CAS  Google Scholar 

  55. Bech-Hansen, N.T., et al.: Mutations in the gene for a novel leucine-rich protein, nyctalopin, cause developmental retinal-circuitry abnormality in X-linked retinitis pigmentosa. Nat. Genet. 26, 319–323 (2000)

    Article  PubMed  CAS  Google Scholar 

  56. Bech-Hansen, N.T., et al.: Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 19(3), 264–7 (1998)

    Article  PubMed  CAS  Google Scholar 

  57. Milam, A.H., et al.: The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc. Natl. Acad. Sci. USA. 99(1), 473–478 (2002)

    Article  PubMed  CAS  Google Scholar 

  58. Hood, D.C., et al.: Enhanced S cone syndrome: evidence for an abnormally large number of S cones. Vision Res. 35(10), 1473–1481 (1995)

    Article  PubMed  CAS  Google Scholar 

  59. Jacobson, S.G., et al.: SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Invest. Ophthalmol. Vis. Sci. 31, 827–838 (1990)

    PubMed  CAS  Google Scholar 

  60. Marlhens, F., et al.: Mutations in RPE65 cause Leber’s congenital amaurosis. Nat. Genet. 17(2), 139–141 (1997)

    Article  PubMed  CAS  Google Scholar 

  61. Acland, G.M., et al.: Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28, 92–95 (2001)

    PubMed  CAS  Google Scholar 

  62. Perrault, I., et al.: Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat. Genet. 14(4), 461–464 (1996)

    Article  PubMed  CAS  Google Scholar 

  63. Freund, C.L., et al.: Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91(4), 543–553 (1997)

    Article  PubMed  CAS  Google Scholar 

  64. Sohocki, M.M., et al.: A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am. J. Hum. Genet. 63(5), 1307–1315 (1998)

    Article  PubMed  CAS  Google Scholar 

  65. Sohocki, M.M., et al.: Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat. Genet. 24(1), 79–83 (2000)

    Article  PubMed  CAS  Google Scholar 

  66. Osterberg, G.: Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. 13(Suppl 6), 11–96 (1935)

    Google Scholar 

  67. Sandberg, M.A., Ariel, M.: A hand-held, two-channel stimulator-ophthalmoscope. Arch. Ophthalmol. 95, 1881–1882 (1978)

    Article  Google Scholar 

  68. Fish, G.E., Birch, D.G.: The focal electroretinogram in the clinical assessment of macular disease. Ophthalmology 96(1), 109–114 (1989)

    PubMed  CAS  Google Scholar 

  69. Birch, D.G., Fish, G.E.: Focal cone electroretinograms: aging and macular disease. Doc. Ophthalmol. 69, 211–220 (1988)

    Article  PubMed  CAS  Google Scholar 

  70. Sutter, E.E.: The fast m-transform: a fast computation of cross-correlations with binary m-sequences. Soc. Ind. Appl. Math. 20, 686–694 (1991)

    Google Scholar 

  71. Hood, D.C., et al.: A comparison of the components of the multifocal and full-field ERGs. Vis. Neurosci. 14, 533–544 (1997)

    Article  PubMed  CAS  Google Scholar 

  72. Westall, C.A., et al.: The Hospital for Sick Children, Toronto. Longitudinal ERG study of children on vigabatrin. Doc. Ophthalmol. 104(2), 133–149 (2002)

    Article  PubMed  Google Scholar 

  73. Ponjavic, V., Andreasson, S.: Multifocal ERG and full-field ERG in patients on long-term vigabatrin medication. Doc. Ophthalmol. 102(1), 63–72 (2001)

    Article  PubMed  CAS  Google Scholar 

  74. Harding, G.F., et al.: Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 41(11), 1420–1431 (2000)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by EY09076 (DGB) and EY05235 (EEB)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Birch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Birch, D.G., Birch, E.E., Spencer, R. (2011). Electroretinographic Testing in Infants and Children. In: Reynolds, J., Olitsky, S. (eds) Pediatric Retina. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12041-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12041-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12040-4

  • Online ISBN: 978-3-642-12041-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics