Skip to main content

Coherence Scanning Interferometry

  • Chapter
Optical Measurement of Surface Topography

Abstract

Height-dependent variations in fringe visibility related to optical coherence in an interference microscope provide a powerful, non-contact sensing mechanism for 3D measurement and surface characterisation. Coherence scanning interferometry extends interferometric techniques to surfaces that are complex in terms of roughness, steps, discontinuities, and structure such as transparent films. Additional benefits include the equivalent of an autofocus at every point in the field of view and suppression of spurious interference from scattered light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulhalim, I.: Spectroscopic interference microscopy technique for measurement of layer parameters. Meas Sci. Technol. 12, 1996–(2001)

    Article  CAS  Google Scholar 

  • Ai, C., Novak, E.: Centroid approach for estimation modulation peak in broad-bandwidth Interferometry. U.S. Patent 5,633,715 (1997)

    Google Scholar 

  • Balasubramanian, N.: Optical system for surface topography measurement. US Patent 4,340,306 (1982)

    Google Scholar 

  • Biegen, J.F.: Interferometric surface profiler for spherical surfaces. US Patent 4,948,253 (1990)

    Google Scholar 

  • Bosseboeuf, A., Petigrand, S.: Application of microscopic interferometry techniques in the MEMS field. In: Proc. SPIE, vol. 5145, pp. 1–16 (2003)

    Google Scholar 

  • Caber, P.J.: Interferometric profiler for rough surfaces. Appl. Opt. 32, 3438–3441 (1993)

    Article  CAS  Google Scholar 

  • Colonna de Lega, X.: Surface profiling using a reference-scanning Mirau interference microscope. In: Proc. SPIE, vol. 5532, p. 106 (2004)

    Google Scholar 

  • Colonna de Lega, X., de Groot, P.: Optical topography measurement of patterned wafers. In: Proc Characterization and Metrology for ULSI Technology, American Institute of Physics, pp. 432–436 (2005)

    Google Scholar 

  • Davidson, M., Kaufman, K., Mazor, I., Cohen, F.: An application of interference microscopy to integrated circuit inspection and metrology. In: Proc. SPIE, vol. 775, pp. 233–240 (1987)

    Google Scholar 

  • Deck, L.: High precision interferometer for measuring mid-spatial frequency departure in free form optics. In: Proc. SPIE, vol. TD04, TD040M-1 (2007)

    Google Scholar 

  • Dresel, T., Haeusler, G., Venzke, H.: Three-dimensional sensing of rough surfaces by coherence radar. Appl. Opt. 31, 919–925 (1992)

    Article  CAS  Google Scholar 

  • Dubois, A.: Effects of phase change on reflection in phase-measuring interference microscopy. Appl. Opt. 43, 1503–1507 (2004)

    Article  Google Scholar 

  • de Groot, P., Deck, L.: Surface profiling by analysis of white-light interferograms in the spatial frequency domain. J. Mod. Opt. 42, 389–401 (1995)

    Article  Google Scholar 

  • de Groot, P., Colonna de Lega, X., Grigg, D.: Step height measurements using a combination of a laser displacement gage and a broadband interferometric surface profiler. In: Proc. SPIE, vol. 4778, pp. 127–130 (2002a)

    Google Scholar 

  • de Groot, P., Colonna de Lega, X., Kramer, J., Turzhitsky, M.: Determination of fringe order in white light interference microscopy. Appl. Opt. 41, 4571–4578 (2002b)

    Article  Google Scholar 

  • de Groot, P., Colonna de Lega, X.: Signal modeling for low coherence height-scanning interference microscopy. Appl. Opt. 43, 4821–4830 (2004)

    Article  Google Scholar 

  • de Groot, P.: Method and system for analyzing low-coherence interferometry signals for information about thin film structures. US Patent 7,321,431 (2008)

    Google Scholar 

  • Häusler, G., Neumann, J.: Coherence radar - an accurate 3-D sensor for rough surfaces. In: Proc SPIE, vol. 1822, pp. 200–205 (1993)

    Google Scholar 

  • Haneishi, H.: Signal processing for film thickness measurements by white light interferometry. Graduate thesis, Department of Communications and Systems Engineering, University of Electro-communications, Chofu, Tokyo (1984)

    Google Scholar 

  • Harasaki, A., Wyant, J.C.: Fringe modulation skewing effect in white-light vertical scanning interferometry. Appl. Opt. 39, 2101–2106 (2000)

    Article  CAS  Google Scholar 

  • ISO/CD 25178-604, Geometrical product specification (GPS) – Surface texture: Areal – Part 604: Nominal characteristics of non-contact (coherence scanning interferometry) instruments. International Organization for Standardization (2011)

    Google Scholar 

  • Kim, S.-W., Kim, G.-H.: Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry. Appl. Opt. 38, 5968–5973 (1999)

    Article  CAS  Google Scholar 

  • Kino, G.S., Chim, S.S.C.: Mirau correlation microscope. Appl. Opt. 29, 3775–3783 (1990)

    Article  CAS  Google Scholar 

  • Larkin, K.G.: Efficient nonlinear algorithm for envelope detection in white light interferometry. J. Opt. Soc. Am. A4, 832–843 (1996)

    Article  Google Scholar 

  • Leach, R., Brown, L., Jiang, X., Blunt, R., Conroy, M.: Guide to the measurement of smooth surface topography using coherence scanning interferometry. Measurement Good Practice Guide No. 108, National Physical Laboratory (2008)

    Google Scholar 

  • Lee-Bennett, I.: Advances in non-contacting surface metrology. In: Proc. Optical Fabrication and Testing (OSA), paper OTuC1 (2004)

    Google Scholar 

  • Lee, B.S., Strand, T.C.: Profilometry with a coherence scanning microscope. Appl. Opt. 29, 3784–3788 (1990)

    Article  CAS  Google Scholar 

  • Michelson, A.A.: Comparison of the international metre with the wavelength of the light of cadmium. Astronomy and Astro-Physics 12, 556–560 (1893)

    Google Scholar 

  • Munteanu, F., Schmit, J.: Iterative least square phase-measuring method that tolerates extended finite bandwidth illumination. Appl. Opt. 48, 1158–1167 (2009)

    Article  Google Scholar 

  • Nakano, K., Yoshida, H., Hane, K., Okuma, S., Eguchi, T.: Fringe scanning interferometric imaging of small vibration using pulsed laser diode. Trans. SICE 31, 454–460 (1995)

    Google Scholar 

  • Novak, E., Schurig, M.: Dynamic MEMS measuring interferometric microscope. In: Proc. SPIE, vol. 5180, pp. 228–235 (2004)

    Google Scholar 

  • Petzing, J., Coupland, J.M., Leach, R.K.: The measurement of rough surface topography using coherence scanning interferometry. Measurement Good Practice Guide No. 116, National Physical Laboratory (2010)

    Google Scholar 

  • Sandoz, P., Devillers, R., Plata, A.: Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry. J. Mod. Opt. 44, 519–534 (1997)

    Article  CAS  Google Scholar 

  • Sandoz, P.: Wavelet transform as a processing tool in white-light interferometry. Opt. Lett. 22, 1065–1067 (1997)

    Article  CAS  Google Scholar 

  • Schmit, J., Krell, M., Novak, E.: Calibration of high-speed optical profiler. In: Proc. SPIE, vol. 5180, pp. 355–364 (2003)

    Google Scholar 

  • Schmit, J., Creath, K., Wyant, J.C.: Optical shop testing. In: Malacara, D. (ed.) Surface profilers, multiple wavelength and white light interferometry, 3rd edn. ch.15, pp. 667–755. John Wiley & Sons, Hoboken (2007)

    Google Scholar 

  • Sheppard, C.J.R., Larkin, K.G.: Effect of numerical aperture on interference fringe spacing. Appl. Opt. 34, 4731–4733 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Groot, P. (2011). Coherence Scanning Interferometry. In: Leach, R. (eds) Optical Measurement of Surface Topography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12012-1_9

Download citation

Publish with us

Policies and ethics