Skip to main content

Uranium Enrichment

  • Chapter
  • First Online:
Sustainable and Safe Nuclear Fission Energy

Part of the book series: Power Systems ((POWSYS))

Abstract

Only gas graphite reactors and heavy water reactors can operate with natural uranium (\({\sim }0.7\%\) U-235). However, the burnup of their fuel is limited. Present light water reactors operating with a fuel burnup of about 55–60 \(\text{ GW}_\mathrm{ th}/\text{ t}\) need their uranium fuel enriched to 4–5% U-235 content. Uranium enrichment is performed almost exclusively by the gaseous diffusion and gas centrifuge process. The gaseous diffusion enrichment plants in the USA and France provide about 42% of the worldwide enrichment capacity. Gaseous diffusion plants will phase out in the near future as more economic gas centrifuge plants will be built which provide already about 58% of the world wide enrichment capacity. The separative work unit (SWU) which is a measure of the amount of energy necessary to produce a certain unit (amount) of enriched uranium is by an order of magnitude lower (in e.g. SWU/kg U) for centrifuge enrichment than for gaseous diffusion enrichment. Laser isotope separation, chemical isotope separation and plasma isotope separation were scientifically studied. Only one laser isotope separation (SILEX) plant is being built in the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Nuclear Fuel Cycle Evaluation (1980) Enrichment availability. Report of INFCE working group 2. International Atomic Energy Agency, Vienna

    Google Scholar 

  2. Villani S (ed) (1979) Uranium Enrichment. Topics in applied physics, vol 35. Springer, Berlin

    Google Scholar 

  3. Benedict M et al (1981) Nuclear chemical engineering. McGraw-Hill, New York

    Google Scholar 

  4. Cohen K (1951) The theory of isotope separation as applied to the large-scale production of U-235. McGraw-Hill, New York

    Google Scholar 

  5. Laughter M (2007) Profile of world uranium enrichment programs—2007, ORNL/TM-2007/193

    Google Scholar 

  6. Rahn FJ et al (1984) A guide to nuclear power technology. Wiley, New York

    Google Scholar 

  7. Ehrfeld W, Ehrfeld U (1980) Anreicherung von U-235. In: Gmelin Handbuch der Anorganischen Chemie, Uran, Ergänzungsband 2A, Isotope. Springer, Berlin

    Google Scholar 

  8. Wood M (2008) Effects of separation processes on minor uranium isotopes in enrichment cascades. Sci Glob Secur 16:26–36

    Article  Google Scholar 

  9. Bukharin O (2004) Russia’s gas centrifuge technology and uranium enrichment complex. Science and Global Security, Princeton University, Princeton

    Google Scholar 

  10. Becker EW et al (1981) Uranium enrichment by the separation nozzle method within the framework of German/Brazilian cooperation. Nucl Technol 52:105–114

    Google Scholar 

  11. Brandberg SG (1973) The conversion of uranium hexafluoride to uranium Dioxide. Nucl Technol 18:177–184

    Google Scholar 

  12. Hackstein KG, Plöger F (1967) Neue Anlage zur Erzeugung von \(\text{ UO}_{2}\)-Pulver aus \(\text{ UF}_{6}\). Atomwirtschaft/Atomtechnik 12:524–526

    Google Scholar 

  13. Hardy CJ (1978) The chemistry of uranium milling. Radiochimica Acta 25:121–134

    Google Scholar 

  14. Keller C, Möllinger H (eds) (1978) Kernbrennstoffkreislauf, Band I. Dr. Alfred Hüthig, Heidelberg

    Google Scholar 

  15. Schneider VW, Plöger F (1978) Herstellung von Brennelementen. In: Baumgärtner F (ed) Chemie der nuklearen Entsorgung, Teil I. Karl Thiemig, München, pp 115–138

    Google Scholar 

  16. Seidel DC (1981) Extracting uranium from its ores. Int At Energy Agency Bull 23(2):24–28

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessler, G. (2012). Uranium Enrichment. In: Sustainable and Safe Nuclear Fission Energy. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11990-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11990-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11989-7

  • Online ISBN: 978-3-642-11990-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics