Skip to main content

DNS of Rising Bubbles Using VOF and Balanced Force Surface Tension

  • Conference paper
High Performance Computing on Vector Systems 2010

Abstract

The rise behavior of small bubbles in a quiescent environment has been investigated by direct numerical simulation (DNS) using the Volume of Fluid (VOF) method and surface tension modeling based on the balanced force approach. The origin of spurious currents using standard (CSF, CSS) models is shown in detail, emphasis is put on the spatial discretization and the calculation of local curvatures. The effect of the new surface tension model on the resulting rise behavior for different bubble diameters is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brackbill, J.U., Kothe, D.B., Zemnach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Dover Publications Inc., Mineola, New York, USA (2005)

    Google Scholar 

  3. Cummins, S.J., Francois,M.M., Kothe, D.B.: Estimating curvature from volume fractions. Comput. Struct. 83, 425–434 (2005)

    Article  Google Scholar 

  4. Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M., Williams, M.W.: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213, 141–173 (2006)

    Article  MATH  Google Scholar 

  5. Ginzburg, I., Wittum, G.: Two-Phase Flows on Interface Refined Grids Modeled with VOF, Staggered Finite Volumes, and Spline Interpolants. J. Comput. Phys. 166, 302–335 (2001)

    Article  MATH  Google Scholar 

  6. Harlow, F.H., Welch, J.E.: Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  7. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  8. Jafari, A., Shirani, E., Ashgriz, N.: An improved three-dimensional model for interface pressure calculations in free-surface flows. Int. J. Comput. Fluid Dyn. 21, 87–97 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koebe, M.: Numerische Simulation aufsteigender Blasen mit und ohne Stoffaustausch mittels der Volume of Fluid (VOF) Methode. PhD thesis, Lehrstuhl für Technische Chemie und Chemische Verfahrenstechnik, Universität Paderborn, Germany, (2004)

    Google Scholar 

  10. Koebe, M., Bothe, D., Prüss, J., Warnecke, H.J.: 3D Direct Numerical Simulation of Air Bubbles in Water at high Reynolds numbers. Proceedings of ASME FEDSM’02 (2002)

    Google Scholar 

  11. Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G.: Modelling Merging and Fragmentation in Multiphase Flows with SURFER. J. Comput. Phys. 113, 134–147 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maxworthy, T., Gnann, C., Kürten, M., Durst, F.: Experiments on the rising of air bubbles in clean viscous liquids. J. Fluid Mech. 321, 421–411 (1996)

    Article  Google Scholar 

  13. Meier, M., Yadigaroglu, G., Smith, B.L.: A novel technique for including surface tension in PLIC-VOF methods. Eur. J. Mech. B. Fluids 21, 61–73 (2002)

    Article  MATH  Google Scholar 

  14. Moore, D.W.: The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23, 749–766 (1965)

    Article  Google Scholar 

  15. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 5838–5866 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Renardy, Y., Renardy, M.: PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method. J. Comput. Phys. 183, 400–421 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rider, W.J., Kothe, D.B.: Reconstructing Volume Tracking. J. Comput. Phys. 141, 112–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schlüter, M.: Blasenbewegung in praxisrelevanten Zweiphasenströmungen. PhD thesis, Institut für Umweltverfahrenstechnik, Universität Bremen, Germany, (2002)

    Google Scholar 

  19. Weking, H., Huber, C., Weigand, B.: Direct Numerical Simulation of Single Gaseous Bubbles in Viscous Liquids. High Performance Computing in Science and Engineering ’09. Springer, Berlin Heidelberg New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Weking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weking, H., Schlottke, J., Boger, M., Rauschenberger, P., Weigand, B., Munz, CD. (2010). DNS of Rising Bubbles Using VOF and Balanced Force Surface Tension. In: Resch, M., et al. High Performance Computing on Vector Systems 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11851-7_13

Download citation

Publish with us

Policies and ethics