Skip to main content

Downscaling Climate Simulations for Use in Hydrological Modeling of Medium-Sized River Catchments

  • Conference paper
High Performance Computing on Vector Systems 2010

Abstract

To assess a possible future change in flood and drought risks for medium and small-scale river catchments, one needs to have data of a higher spatial and temporal resolution than what is provided by the global climate models. The COSMO-CLM regional climate model has to this purpose been used to downscale a set of global climate simulations to a 7 km horizontal resolution. In order to assess some of the uncertainties involved in near future scenario simulations, several different global simulations are downscaled to produce an ensemble of high resolution data. This will then be used as input to hydrological catchment models to assess future changes in flood risk for three catchments in Germany, within the CEDIM-project “Flood hazard in a changing climate” (Hochwassergefahr durch Klimawandel).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doms, G. and U. Schättler (2002): A description of the nonhydrostatic regional model LM, Part I: Dynamics and Numerics. COSMO Newsletter, 2, 225–235.

    Google Scholar 

  2. Röckner, E. (2006a): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_1_6H]

  3. Röckner, E. (2006b): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.2: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_2_6H]

  4. Röckner, E. (2006c): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_3_6H]

  5. Röckner, E., Lautenschlager, M., Schneider, H. (2006a): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_1_6H]

  6. Röckner, E., Lautenschlager, M., Schneider, H. (2006c): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.2: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_2_6H]

  7. Röckner, E., Lautenschlager, M., Schneider, H. (2006b): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_3_6H]

  8. Meissner, C. and G. Schädler (2007): Modelling the Regional Climate of Southwest Germany: Sensitivity to Simulation Setup. In: High Performance Computing in Science and Engineering ’07 [W.E. Nagel, D. Kröner, M. Resch (Eds.)]. ISBN 978-3-540-74738-3, Springer Berlin Heidelberg New York.

    Google Scholar 

  9. Meissner, C., G. Schädler, H.-J. Panitz, H. Feldmann, and Ch. Kottmeier (2009): High resolution sensitivity studies with the regional climate model COSMO-CLM. Meteoroligsche Zeitschrift, 18, 543–557, doi:10.1127/0941-2948/20090400.

    Article  Google Scholar 

  10. Uppala, M., P.W. Kållberg, A.J. Simmons, U. Andrae, V. Da Costa Bechtold, M. Fiorino, J.K. Gibson, J. Haseler, A. Hernandez, G.A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R.P. Allan, E. Andersson, K. Arpe, M.A. Balmaseda, A.C.M. Beljaars, L. Van de Berg, J. Bildlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fischer, M. Fuentes, S. Hagemann, E. Hólm, B.J. Hoskins, L. Isaksen, P.A.E.M. Janssen, R. Jenne, A.P. McNally, J.-F. Mahfouf, J.-J. Morcrette, N.A. Rayner, R.W. Saunders, P. Simon, A. Sterl, K.E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, J. Woolen, (2005): The ERA40 re-analysis, Q.J.R Meteorol. Soc., 131, 2961–3012.

    Article  Google Scholar 

  11. Nakicenovic, N. et al. (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at: http://www.grida.no/climate/ipcc/emission/index.htm.

    Google Scholar 

  12. Panitz, H.-J., G. Schädler, and H. Feldmann (2010): Modelling Regional Climate Change in Southwest Germany, In: High Performance Computing in Science and Engineering ’09 [W.E. Nagel, D. Kröner, M. Resch (Eds.)]. ISBN 978-3-642-04664-3, Springer Berlin Heidelberg New York 2010.

    Google Scholar 

  13. Panitz, H.-J., G. Schädler, and H. Feldmann (2009): Modelling Regional Climate Change in Southwest Germany. Oral presentation, The 12th Results and Review Workshop of the HLRS, October 8–9, 2009, at the High Performance Computing Center Stuttgart.

    Google Scholar 

  14. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones and M. New (2008): A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    Article  Google Scholar 

  15. Deutscher Wetterdienst (DWD), Germany (2008).

    Google Scholar 

  16. Deutscher Wetterdienst (DWD)/Potsdam-Institut für Klimafolgenforschung (PIK), Germany (2008): Meteorologischer Datensatz für Deutschland 1951–2006.

    Google Scholar 

  17. Yang, D., E. Elomaa, A. Tuominen, A. Aaltonen, B. Goodison, T. Gunther, V. Golubev, B. Sevruk, H. Madsen, and J. Milkovic (1999): Wind-induced precipitation undercatch of the Hellmann gauges. Nordic Hydrology, 30, 57–80.

    Google Scholar 

  18. BMU (2003): Hydrologischer Atlas von Deutschland, Freiburg, ISBN:3-00-005624-6.

    Google Scholar 

  19. McFarlane, N.A., J.F. Scinocca, M. Lazare, R. Harvey, D. Verseghy, and J. Li (2005): The CCCma third generation atmospheric general circulation model. CCCma Internal Rep., 25 pp.

    Google Scholar 

  20. Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. and Phys., 8, 7055–7074.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berg, P., Panitz, HJ., Schädler, G., Feldmann, H., Kottmeier, C. (2010). Downscaling Climate Simulations for Use in Hydrological Modeling of Medium-Sized River Catchments. In: Resch, M., et al. High Performance Computing on Vector Systems 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11851-7_12

Download citation

Publish with us

Policies and ethics