Skip to main content

New Shock Detector for Shock-Boundary Layer Interaction

  • Conference paper
High Performance Computing and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5938))

  • 2346 Accesses

Abstract

Standard compact scheme or upwind compact scheme have high order accuracy and high resolution, but cannot capture the shock which is a discontinuity. This work developed a modified compact scheme by an effective shock detector to block compact scheme to cross the shock, a control function, and an adaptive scheme which uses some WENO flux near the shock. The new scheme makes the original compact scheme able to capture the shock sharper than WENO and, more important, keep high order accuracy and high resolution in the smooth area which is particularly important for shock boundary layer interaction and shock acoustic interaction. The scheme is robust and has no case-related coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costa, B., Dong, W.: High order hybrid central-WENO finite difference scheme for conservation laws. Journal of Computational and Applied Mathematics 204, 209–218 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gaitonde, D., Visbal, M.: Padé-type high-order boundary filters for the Navier-Stokes equations. AIAA Journal 38(11), 2103–2112 (2000)

    Article  Google Scholar 

  3. Gaitonde, D., Canupp, P.W., Holden, M.: Heat transfer predictions in a laminar hypersonic viscous/inviscid interaction. Journal of Thermophysics and Heat Transfer 16(4) (2002)

    Google Scholar 

  4. Godunov, S.K.: A difference scheme for numerical computation of discontinuous solution of hydrodynamic equations. Math Sbornik 47, 271–306 (in Russian); translated US Joint Publ. Res. Service, JPRS 7226 (1969)

    MathSciNet  Google Scholar 

  5. Harten, A.: High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harten, A., Engquist, B., Osher, B., Charkravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. Journal of Computational Physics 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO scheme. Journal of Computational Physics 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, L., Shan, H., Liu, C.: Weighted compact scheme for shock capturing. International Journal of Computational Fluid Dynamics 15, 147–155 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kim, D., Kwon, J.: A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis. Journal of Computational Physics 210, 554–583 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, C., Xie, P., Oliveira, M.: High order modified compact scheme for high speed flow. Technical Report to AFRL/RB

    Google Scholar 

  12. Liu, D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. Journal of Computational Physics 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Oliveira, M., Lu, P., Liu, X., Liu, C.: A new shock/discontinuity detector. International Journal of Computer Mathematics (accepted, 2009)

    Google Scholar 

  14. Ren, Y., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics 192, 365–386 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing scheme. Journal of Computational Physics 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Journal of Computational Physics 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Su, J., Xie, P., Oliveira, M., Liu, C.: Error analysis for weighted higher order compact finite difference scheme. Applied Mathematical Sciences 1(58), 2863–2881 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s scheme. Journal of Computational Physics 32, 101–136 (1979)

    Article  Google Scholar 

  20. Visbal, M., Gaitonde, D.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. Journal of Computational Physics 181, 155–158 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wadhams, T.P., Holden, M.S.: Summary of experimental studies for code validation in the LENS facility with recent Navier-Stokes and DSMC solutions for two- and three-dimensional separated regions in hypervelocity flows. AIAA Paper 2004-917 (2002)

    Google Scholar 

  22. Zhou, Q., Yao, Z., He, F., Shen, M.Y.: A new family of high-order compact upwind difference schemes with good spectral resolution. Journal of Computational Physics 227(2), 1306–1339 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, C., Oliveira, M. (2010). New Shock Detector for Shock-Boundary Layer Interaction. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds) High Performance Computing and Applications. Lecture Notes in Computer Science, vol 5938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11842-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11842-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11841-8

  • Online ISBN: 978-3-642-11842-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics