Skip to main content

A Parallel Algebraic Multigrid Solver on Graphics Processing Units

  • Conference paper
High Performance Computing and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5938))

Abstract

The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster and a multi-GPU configuration with eight GPUs is about 100 times faster than a typical server CPU core.

This publication is based on work supported in part by NSF grants OISE-0405349, ACI-0305466, CNS-0719626, and ACI-0324876, by DOE project DE-FC26-08NT4, by FWF project SFB032, by BMWF project AustrianGrid 2, and Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baskaran, M.M., Bordawekar, R.: Optimizing sparse matrix-vector multiplication on gpus. IBM Technical Report RC24704 (2008)

    Google Scholar 

  2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. NVIDIA Technical Report NVR-2008-004 (2008)

    Google Scholar 

  3. Bornemann, F.A., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75, 135–152 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Briggs, W.L., Henson, V.E., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  5. Douglas, C.C.: Madpack: A family of abstract multigrid or multilevel solvers. Comput. Appl. Math. 14, 3–20 (1995)

    MATH  Google Scholar 

  6. Douglas, C.C., Haase, G., Langer, U.: A Tutorial on Elliptic Pde Solvers and Their Parallelization. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  7. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  8. Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker, C., Turek, S.: Using GPUs to improve multigrid solver performance on a cluster. International Journal of Computational Science and Engineering 4(1), 36–55 (2008)

    Google Scholar 

  9. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message Passing Interface. The MIT Press, Cambridge (1999)

    Google Scholar 

  10. Haase, G., Kuhn, M., Reitzinger, S.: Parallel AMG on distributed memory computers. SIAM SISC 24(2), 410–427 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Im, E.-J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix kernels. Int. J. High Perform. Comput. Appl. 18(1), 135–158 (2004)

    Article  Google Scholar 

  12. Liebmann, M.: Efficient PDE Solvers on Modern Hardware with Applications in Medical and Technical Sciences. PhD thesis, University of Graz, Department of Mathematics and Scientific Computing (July 2009)

    Google Scholar 

  13. Plank, G., Liebmann, M., Weber dos Santos, R., Vigmond, E.J., Haase, G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Transactions on Biomedical Engineering 54(4), 585–596 (2007)

    Article  Google Scholar 

  14. Ruge, J.W., Stüben, K.: Efficient solution of finite difference and finite element equations by algebraic multigrid (amg). In: Multigrid methods for integral and differential equations. The Institute of Mathematics and Its Applications Conference Series, pp. 169–212. Clarendon Press, Oxford (1985)

    Google Scholar 

  15. Thoman, P.: Multigrid Methods on GPUs, p. 62. VDM, Saarbrücken (2008)

    Google Scholar 

  16. Vassilevski, P.S.: Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations, 1st edn. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haase, G., Liebmann, M., Douglas, C.C., Plank, G. (2010). A Parallel Algebraic Multigrid Solver on Graphics Processing Units. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds) High Performance Computing and Applications. Lecture Notes in Computer Science, vol 5938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11842-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11842-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11841-8

  • Online ISBN: 978-3-642-11842-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics