Skip to main content

QKD in Standard Optical Telecommunications Networks

  • Conference paper
Quantum Communication and Quantum Networking (QuantumComm 2009)

Abstract

To perform Quantum Key Distribution, the mastering of the extremely weak signals carried by the quantum channel is required. Transporting these signals without disturbance is customarily done by isolating the quantum channel from any noise sources using a dedicated physical channel. However, to really profit from this technology, a full integration with conventional network technologies would be highly desirable. Trying to use single photon signals with others that carry an average power many orders of magnitude bigger while sharing as much infrastructure with a conventional network as possible brings obvious problems. The purpose of the present paper is to report our efforts in researching the limits of the integration of QKD in modern optical networks scenarios. We have built a full metropolitan area network testbed comprising a backbone and an access network. The emphasis is put in using as much as possible the same industrial grade technology that is actually used in already installed networks, in order to understand the throughput, limits and cost of deploying QKD in a real network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC Quantum-Key-Distribution Network. Int. J. Quantum Inf. 6(2), 209–218 (2008)

    Article  Google Scholar 

  2. Peters, N.A., et al.: Dense Wavelength Multiplexing of 1550 nm QKD with Strong Classical Channels in Reconfigurable Networking Environments. New. J. of Phys. 11, 045012 (2009)

    Article  Google Scholar 

  3. Lancho, D., et al.: Quantum Key Distribution in Commercial Optical Networks. Report to the SECOQC Conference (October 2008), http://www.secoqc.net

  4. Bennett, C.H., Brassard, G.: The Dawn of a New Era for Quantum Cryptography: The experimental prototype is working! Sig. Act News 20(4), 78 (1989)

    Article  Google Scholar 

  5. Toliver, P., et al.: Experimental Investigation of Quantum Key Distribution Through Transparent Optical Switch Elements. IEEE Photonics Tech. Lett. 15(11), 1669–1671 (2003)

    Article  Google Scholar 

  6. Runser, R.J., et al.: Quantum Key Distribution for Reconfigurable Optical Networks. In: 2006 Optical Fiber Communication Conference. Contribution OFL1 (2006)

    Google Scholar 

  7. Runser, R.J., et al.: Demonstration of 1.3 μm Quantum Key Distribution Compatibility with 1.5 μm Metropolitan Wavelength Division Multiplexed Systems. In: 2005 Optical Fiber Communication Conference. Contribution OWI2 (2005)

    Google Scholar 

  8. Subacius, D., Zavriyev, A., Trifonov, A.: Backscattering Limitation for Fiber-optic Quantum Key Distribution Systems. Appl. Phys. Lett. 86, 011103 (2005)

    Article  Google Scholar 

  9. Xia, T.J., et al.: In-Band Quantum Key Distribution (QKD) on Fiber Populated by High-Speed Classical Data Channels. In: 2006 Optical Fiber Communication Conference. Contribution OTuJ7 (2006)

    Google Scholar 

  10. Toliver, P., et al.: Demonstration of 1550 nm QKD with ROADM-based DWDM Networking and the Impact of Fiber FWM. In: 2007 Optical Fiber Communication Conference. Contribution CThBB1, vol. 1 (2007)

    Google Scholar 

  11. DWDM: ITU-T G.694.1 (06/2002): Spectral grids for WDM applications: DWDM frequency grid, http://www.itu.int/rec/T-REC-G.694.1-200206-I/en

  12. CWDM: ITU-T G.694.2 (12/2003): Spectral grids for WDM applications: CWDM wavelength grid, http://www.itu.int/rec/T-REC-G.694.2-200312-I/en

  13. GPON: ITU-T G.984.1 (03/2008): Gigabit-capable Passive Optical Networks (GPON): General Characteristics, http://www.itu.int/rec/T-REC-G.984.1-200803-I/en

  14. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  15. Elkouss, D., Martinez, J., Lancho, D., Martin, V.: Rate Compatible Protocol for Information Reconciliation: An application to QKD. Submitted to IEEE Information Theory Workshop 2010 (ITW 2010), Cairo (2010)

    Google Scholar 

  16. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: First QKD experiment. J. of Cryptology 5, 3 (1992)

    Article  Google Scholar 

  17. Lo, H.-K., Ma, X., Chen, K.: Decoy State Quantum Key Distribution Phys. Rev. Lett. 94, 230504 (2005)

    Article  Google Scholar 

  18. Hwang, W.-Y.: Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 91(5) (2003)

    Google Scholar 

  19. Ma, X., Qi, B., Zhao, Y., Lo, H.-k.: Practical Decoy State for Quantum Key Distribution. Phys. Rev. A 72, 012326 (2005)

    Article  Google Scholar 

  20. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Van Assche, G.: Quantum Cryptography and Secret-Key Distillation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lancho, D., Martinez, J., Elkouss, D., Soto, M., Martin, V. (2010). QKD in Standard Optical Telecommunications Networks. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics