Skip to main content

Quantifying Mechanical Properties in a Murine Fracture Healing System Using an Inverse Geometric Nonlinear Elasticity Modeling Framework

  • Conference paper
Biomedical Simulation (ISBMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5958))

Included in the following conference series:

  • 1026 Accesses

Abstract

Understanding bone remodeling and mechanical property characteristics is important for assessing treatments to accelerate healing or in developing diagnostics to evaluate successful return to function. The murine system whereby mid-diaphaseal tibia fractures are imparted on the subject and fracture healing is assessed at different time points and under different therapeutic conditions is a particularly useful model to study. In this work, a novel inverse geometric nonlinear elasticity modeling framework is proposed that can reconstruct multiple mechanical properties from uniaxial testing data. This is investigated within the context of a murine cohort (n=3) that are 14 days post fracture. This work is the first to report mechanical properties of a callus using an inverse problem methodology whereby 2758.4 ± 682.5 kPa, 0.467 ± 0.009 were found to be the Young’s modulus and Poisson’s ratio, respectively. In addition better consistency of the reconstructed metrics over more traditional metrics is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tomak, Y., Kocaoglu, M., Piskin, A., Yildiz, C., Gulman, B., Tomak, L.: Treatment of intertrochanteric fractures in geriatric patients with a modified external fixator. Injury-International Journal of the Care of the Injured 36, 635–643 (2005)

    Google Scholar 

  2. Toh, E.M., Sahni, V., Acharya, A., Denton, J.S.: Management of intracapsular femoral neck fractures in the elderly; is it time to rethink our strategy? Injury-International Journal of the Care of the Injured 35, 125–129 (2004)

    Google Scholar 

  3. Sharif, K.M., Parker, M.J.: Austin Moore hemiarthroplasty: technical aspects and their effects on outcome, in patients with fractures of the neck of femur. Injury-International Journal of the Care of the Injured 33 (2002); PII S0020-1383(0002)00041-00044

    Google Scholar 

  4. Granero-Molto, F., Weis, J.A., Landis, B., Longobardi, L., Miga, M.I., Spagnoli, A.: Mesenchymal Stem Cells Enhance Fracture Healing: Essential Role for Cytokines in Homing and Anti-Inflammatory Response. Journal of Bone and Mineral Research 23, S166–S167 (2008)

    Google Scholar 

  5. Gardner, M.J., van der Meulen, M.C.H., Demetrakopoulos, D., Wright, T.M., Myers, E.R., Bostrom, M.P.: In vivo cyclic axial compression affects bone healing in the mouse tibia. J. Orthop. Res. 24, 1679–1686 (2006)

    Article  Google Scholar 

  6. Moukoko, D., Pithioux, M., Chabrand, P.: Temporal evolution of mechanical properties of skeletal tissue regeneration in rabbits: an experimental study. Med. Biol. Eng. Comput. 45, 989–995 (2007)

    Article  Google Scholar 

  7. Morgan, E.F., Mason, Z.D., Chien, K.B., Pfeiffer, A.J., Barnes, G.L., Einhorn, T.A., Gerstenfeld, L.C.: Micro-computed tomography assessment of fracture healing: Relationships among callus structure, composition, and mechanical function. Bone 44, 335–344 (2009)

    Article  Google Scholar 

  8. Reynolds, D.G., Hock, C., Shaikh, S., Jacobson, J., Zhang, X.P., Rubery, P.T., Beck, C.A., O’Keefe, R.J., Lerner, A.L., Schwarz, E.M., Awad, H.A.: Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts. J. Biomech. 40, 3178–3186 (2007)

    Article  Google Scholar 

  9. Shefelbine, S.J., Simon, U., Claes, L., Gold, A., Gabet, Y., Bab, I., Muller, R., Augat, P.: Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone 36, 480–488 (2005)

    Article  Google Scholar 

  10. Weis, J.A., Granero-Molto, F., O’Rear, L.D., Miga, M.I., Spagnoli, A.: Development of a high-resolution 3D Micro-CT based model to predict fracture callus histological architecture. Journal of Bone and Mineral Research 22, W472 (2007)

    Google Scholar 

  11. Weis, J.A., Miga, M.I., Granero-Molto, F., Spagnoli, A.: A finite element inverse analysis to assess functional improvement during the fracture healing process. J. Biomech. (in press, 2009)

    Google Scholar 

  12. Joachimowicz, N., Pichot, C., Hugonin, J.P.: Inverse Scattering - an Iterative Numerical-Method for Electromagnetic Imaging. IEEE Transactions on Antennas and Propagation 39, 1742–1752 (1991)

    Article  Google Scholar 

  13. Bonnarens, F., Einhorn, T.A.: Production of a standard closed fracture in laboratory animal bone. J. Orthop. Res. 2, 97–101 (1984)

    Article  Google Scholar 

  14. Schriefer, J.L., Robling, A.G., Warden, S.J., Fournier, A.J., Mason, J.J., Turner, C.H.: A comparison of mechanical properties derived from multiple skeletal sites in mice. J. Biomech. 38, 467–475 (2005)

    Article  Google Scholar 

  15. Benzley, S.E., Perry, E., Merkley, K., Clark, B., Sjaardema, G.: A Comparison of All-Hexahedral and All-Tetrahedral Finite Element Meshes for Elastic and Elasto-Plastic Analysis. In: Proc. 4th International Meshing Roundtable, Sandia National Laboratories, pp. 179–191 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miga, M.I., Weis, J.A., Granero-Molto, F., Spagnoli, A. (2010). Quantifying Mechanical Properties in a Murine Fracture Healing System Using an Inverse Geometric Nonlinear Elasticity Modeling Framework. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2010. Lecture Notes in Computer Science, vol 5958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11615-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11615-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11614-8

  • Online ISBN: 978-3-642-11615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics