Skip to main content

Fusion of a Camera and a Laser Range Sensor for Vehicle Recognition

  • Chapter
  • First Online:
Machine Vision Beyond Visible Spectrum

Part of the book series: Augmented Vision and Reality ((Augment Vis Real,volume 1))

  • 1344 Accesses

Abstract

Fusing different sensory data into a singular data stream is not a recent idea, but with the diffusion of various simple and compact sensors, multi-sensor fusion has inspired new research initiatives. Sensor fusion improves measurement precision and perception, offering greater benefits than using each sensor individually. In this chapter we present a system that fuses information from a vision sensor and a laser range sensor for detection and classification. Although the laser range sensors are good at localizing objects accurately, vision images contain more useful features to classify the object. By fusing these two sensors, we can obtain 3D information about the target object, together with its textures, with high reliability and robustness to outdoor conditions. To evaluate the performance of the system, it is applied to recognition of on-street parked vehicles from a moving probe vehicle. The evaluation experiments show obviously successful results, with a detection rate of 100% and accuracy over 95% in recognizing four vehicle classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanco, J., Burgard, W., Sanz, R., Fernandez, J.L.: Fast face detection for mobile robots by integrating laser range data with vision. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 625–631 (2003)

    Google Scholar 

  2. Song, X., Cui, J., Zhao, H., Zha, H.: Bayesian fusion of laser and vision for multiple people detection and tracking. In: Proceedings of the SICE Annual Conference on 2008 (SICE08), pp. 3014–3019 (2008)

    Google Scholar 

  3. Baltzkis, H., Argyros, A., Trahanias, P.: Fusion of laser and visual data for robot motion planning and collision avoidance. Mach. Vis. Appl. 15, 92–100 (2003)

    Article  Google Scholar 

  4. Pagnottelli, S., Taraglio, S., Valigi, P., Zanela, A.: Visual and laser sensory data fusion for outdoor robot localisation and navigation. In: Proceedings of the 12th International Conference on Advanced Robotics, 18–20 July 2005, pp. 171–177 (2005)

    Google Scholar 

  5. Wender, S., Clemen, S., Kaempchen, N., Dietmayer, K.C.J.: Vehicle detection with three dimensional object models. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany, September (2006)

    Google Scholar 

  6. Ono, S., Kagesawa, M., Ikeuchi, K.: Recognizing vehicles in a panoramic range image. In: Meeting on Image Recognition and Understanding (MIRU), pp. 183–188 (2002)

    Google Scholar 

  7. Mei, C., Rives, P.: Calibration between a central catadioptric camera and a laser range finder for robotic applications. In: Proceedings of ICRA06, Orlando, May (2006)

    Google Scholar 

  8. Wasielewski, S., Strauss, O.: Calibration of a multi-sensor system laser rangefinder/camera. In: Proceedings of the Intelligent Vehicles ’95 Symposium, pp. 472–477 (1995)

    Google Scholar 

  9. Jokinen, O.: Self-calibration of a light striping system by matching multiple 3-d profile maps. In: Proceedings of the 2nd International Conference on 3D Digital Imaging and Modeling, pp. 180–190 (1999)

    Google Scholar 

  10. Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: Intelligent Robots and Systems (IROS), (2004)

    Google Scholar 

  11. Unnikrishnan, R., Hebert, M.: Fast extrinsic calibration of a laser rangefinder to a camera. Technical Report, CMU-RI-TR-05-09, Robotics Institute, Carnegie Mellon University, July (2005)

    Google Scholar 

  12. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary images. J. R. Stat. Soc. 51(2), 271–279 (1989)

    Google Scholar 

  13. Yoshida, T., Mohottala, S., Kagesawa, M., Tomonaka, T., Ikeuchi, K.: Vehicle classification system with local-feature based algorithm using cg model images. IEICE Trans. Inf. Syst. E85D(11), 1745–1752 (2002)

    Google Scholar 

  14. Krumm, J.: Object detection with vector quantized binary features. In: Proceedings of Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 179–185 (1997)

    Google Scholar 

  15. Ohba, K., Ikeuchi, K.: Detectability, uniqueness, and reliability of eigen windows for stable verification of partially occluded objects. IEEE Trans. Pattern Anal. Mach. Intell. 19(9), 1043–1048 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirmila Mohottala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohottala, S., Ono, S., Kagesawa, M., Ikeuchi, K. (2011). Fusion of a Camera and a Laser Range Sensor for Vehicle Recognition. In: Hammoud, R., Fan, G., McMillan, R., Ikeuchi, K. (eds) Machine Vision Beyond Visible Spectrum. Augmented Vision and Reality, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11568-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11568-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11567-7

  • Online ISBN: 978-3-642-11568-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics