Skip to main content

Towards Poroelasticity of Fractal Materials

  • Chapter
Continuous Media with Microstructure

Abstract

This study proposes a model of poroelasticity grasping the fractal geometry of the pore space occupied by the fluid phase as well as the fractal geometry of the solid (matrix) phase. The dimensional regularization approach employed is based on product measures which account for an arbitrary anisotropic structure. This, in turn, leads to a re-interpretation of spatial gradients (of both fluid velocity and displacement fields) appearing in the balance and constitutive equations; the latter are adapted from the classical poroelasticity. In effect, an initial-boundary value problem of a fractal medium can be mapped into one of a homogenized, non-fractal medium, and, should all the fractal dimensions become integer, all the equations reduce back to those of classical poroelasticty. Overall, the proposed methodology broadens the applicability of continuum mechanics/physics and sets the stage for poromechanics of fractal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guéguen, Y., Boutéca, M.: Mechanics of Fluid-Saturated Rocks. Elsevier, Amsterdam (2004)

    Google Scholar 

  2. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  3. Du, X., Ostoja-Starzewski, M.: On the size of representative volume element for Darcy law in random media. Proc. R. Soc. A 462, 2949–2963 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Rice, J.R., Cleary, M.P.: Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Review of Geophysics and Space Physics 14, 227–241 (1976)

    Article  Google Scholar 

  5. Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005)

    Article  MATH  Google Scholar 

  6. Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tarasov, V.E.: Wave equation for fractal solid string. Mod. Phys. Lett. B 19, 721–728 (2005)

    Article  MATH  Google Scholar 

  8. Ostoja-Starzewski, M.: Towards thermomechanics of fractal media. ZAMP 58(6), 1085–1096 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media. J. Thermal Stresses 30(9-10), 889–896 (2007)

    Article  Google Scholar 

  10. Ostoja-Starzewski, M., Li, J.: Fractal materials, beams, and fracture mechanics. ZAMP 60(6), 1194–1205 (2009)

    Article  MATH  Google Scholar 

  11. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009)

    Article  MathSciNet  Google Scholar 

  12. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and continuum mechanics. In: Maugin, G.A. (ed.) Proc. EUROMECH Colloquium, vol. 510 (in press, 2009)

    Google Scholar 

  13. Ostoja-Starzewski, M.: Continuum mechanics models of fractal porous media: Integral relations and extremum principles. J. Mech. Mater. Struct. 4(5), 912 (2009)

    Google Scholar 

  14. Ostoja-Starzewski, M.: Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)

    Article  MATH  Google Scholar 

  15. Ostoja-Starzewski, M.: On turbulence in fractal porous media. ZAMP 59(6), 1111–1117

    Google Scholar 

  16. Ignaczak, Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2009)

    Book  Google Scholar 

  17. Rudnicki, J.W.: Effect of pore fluid diffusion on deformation and failure of rock. In: Bažant, Z.P. (ed.) Mechanics of Geomaterials, pp. 315–347 (1985)

    Google Scholar 

  18. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman & Co., New York (1982)

    MATH  Google Scholar 

  19. Feder, J.: Fractals (Physics of Solids and Liquids). Springer, Heidelberg (2007)

    Google Scholar 

  20. Carpinteri, A., Chiaia, B., Cornetti, P.: A disordered microstructure material model based on fractal geometry and fractional calculus. ZAMM 84, 128–135 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Carpinteri, A., Pugno, N.: Are scaling laws on strength of solids related to mechanics or to geometry? Nature Materials 4, 421–423 (2005)

    Article  Google Scholar 

  22. Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Lett. 18, 739–748 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2008)

    Article  MathSciNet  Google Scholar 

  24. Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  25. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, London (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ostoja-Starzewski, M. (2010). Towards Poroelasticity of Fractal Materials. In: Albers, B. (eds) Continuous Media with Microstructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11445-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11445-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11444-1

  • Online ISBN: 978-3-642-11445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics