Skip to main content

Instabilites in Arch Shaped MEMS

  • Chapter
Continuous Media with Microstructure

Abstract

Arch shaped microelectromechanical systems (MEMS) have been used as mechanical memories, micro-relays, micro-valves, optical switches, and digital micro-mirrors. A bi-stable structure is characterized by a multivalued load deflection curve. Here, the symmetry breaking, the snap-through instability, and the pull-in instability of a sinusoidal shaped MEMS under static and dynamic electric loads have been studied. The electric load is a nonlinear function of the a priori unknown deformed shape of the arch, and is thus a follower type load. The nonlinear partial differential equation governing transient deformations of the arch is solved numerically using the Galerkin method and the resulting ordinary differential equations are integrated by using the Livermore solver for ordinary differential equations. For the static problem, the displacement control and the pseudo-arc length continuation methods are used to obtain the bifurcation curve of the MEMS displacement versus a load parameter. The displacement control method fails to compute asymmetric deformations of the MEMS, which are found by the pseudo-arc-length continuation method. Two distinct mechanisms of the snap-through instability for the dynamic problem are demonstrated. It is found that critical loads and geometric parameters for instabilities of an arch under an electric load with and without the consideration of mechanical inertia effects are quite different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering 12, 759–766 (2002)

    Article  Google Scholar 

  2. Ananthasuresh, G.K., Gupta, R.K., Senturia, S.D.: An approach to macromodeling of MEMS for nonlinear dynamic simulation. In: Proceedings of the ASME International Conference of Mechanical Engineering Congress and Exposition (MEMS), Atlalta, GA, pp. 401–407 (1996)

    Google Scholar 

  3. Bassous, E., Taub, H.H., Kuhn, L.: Ink jet printing nozzle arrays etched in silicon. Applied Physics Letters 31, 135–137 (1977)

    Article  Google Scholar 

  4. Batra, R.C., Porfiri, M., Spinello, D.: Electromechanical Model of Electrically Actuated Narrow Microbeams. Journal of Microelectromechanical Systems 15, 1175–1189 (2006)

    Article  Google Scholar 

  5. Chao, P.C.-P., Chiu, C.W., Liu, T.-H.: DC dynamic pull-in predictions for a generalized clamped-clamped micro-beam based on a continuous model and bifurcation analysis. Journal of Micromechanics and Microengineering 18, 0960–1317 (2008)

    Google Scholar 

  6. Chu, P.B., Nelson, P.R., Tachiki, M.L., Pister, K.S.J.: Dynamics of polysilicon parallel-plate electrostatic actuators. Sensors and Actuators A: Physical 52, 216–220 (1996)

    Article  Google Scholar 

  7. Das, K., Batra, R.C.: Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering 19, 035008 (2009)

    Article  Google Scholar 

  8. Das, K., Batra, R.C.: Symmetry breaking, snap-through, and pull-in instabilities under dynamic loading of microelectromechanical shallow arches. Smart Materials and Structures 18, 115008 (2009)

    Article  Google Scholar 

  9. Flores, G., Mercado, G.A., Pelesko, J.A.: Dynamics and touchdown in electrostatic MEMS. In: Proceedings of International Conference on MEMS, NANO and Smart Systems, 2003, pp. 182–187 (2003)

    Google Scholar 

  10. Goll, C., Bacher, W., Buestgens, B., Maas, D., Menz, W., Schomburg, W.K.: Microvalves with bistable buckled polymer diaphragms. Journal of Micromechanics and Microengineering, 77–79 (1996)

    Google Scholar 

  11. Humphreys, J.S.: On dynamic snap buckling of shallow arches. AIAA Journal 4, 878–886 (1966)

    Article  Google Scholar 

  12. Hung, E.S., Senturia, S.D.: Extending the travel range of analog-tuned electrostatic actuators. Journal of Microelectromechanical Systems 8, 497–505 (1999)

    Article  Google Scholar 

  13. Krylov, S., Bojan, R.I., David, S., Shimon, S., Harold, C.: The pull-in behavior of electrostatically actuated bistable microstructures. Journal of Micromechanics and Microengineering, 055026 (2008)

    Google Scholar 

  14. Krylov, S., Maimon, R.: Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force. Journal of Vibration and Acoustics 126, 332–342 (2004)

    Article  Google Scholar 

  15. Krylov, S., Serentensky, S., Schreiber, D.: Pull-in behavior of electrostatically actuated multistable microstructures. In: ASME 2007 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Las Vegas, Nevada, USA (2007)

    Google Scholar 

  16. Krylov, S., Seretensky, S., Schreiber, D.: Pull-in behavior and multistability of a curved microbeam actuated by a distributed electrostatic force. In: Seretensky, S. (ed.) IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008. MEMS 2008, pp. 499–502 (2008)

    Google Scholar 

  17. Kugel, V.D., Xu, B., Zhang, Q.M., Cross, L.E.: Bimorph-based piezoelectric air acoustic transducer: model. Sensors and Actuators A: Physical 69, 234–242 (1998)

    Article  Google Scholar 

  18. Legtenberg, R., Tilmans, H.A.C.: Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication Sensors and Actuators A: Physical 45, 57–66 (1994)

    Article  Google Scholar 

  19. Nathanson, H.C., Newell, W.E., Wickstrom, R.A., Davis Jr., J.R.: The resonant gate transistor. IEEE Transactions on Electron Devices 14, 117–133 (1967)

    Article  Google Scholar 

  20. Nayfeh, A., Younis, M., Abdel-Rahman, E.: Dynamic pull-in phenomenon. MEMS resonators Nonlinear Dynamics 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  21. Nguyen, C.T.C., Katehi, L.P.B., Rebeiz, G.M.: Micromachined devices for wireless communications. Proceedings of the IEEE 86, 1756–1768 (1998)

    Article  Google Scholar 

  22. Park, S., Hah, D.: Pre-shaped buckled-beam actuators: Theory and experiments. Sensors and Actuators A: Physical 148, 186–192 (2008)

    Article  Google Scholar 

  23. Postma, H.W.C., Kozinsky, I., Husain, A., Roukes, M.L.: Dynamic range of nanotube- and nanowire-based electromechanical systems. Applied Physics Letters 86, 223105 (2005)

    Article  Google Scholar 

  24. Rebeiz, G.M.: RF MEMS theory, design, and technology. John Wiley & Sons, Inc., Hoboken (2003)

    Book  Google Scholar 

  25. Roylance, L.M., Angell, J.B.: A batch-fabricated silicon accelerometer. IEEE Transactions on Electron Devices 26, 1911–1917 (1979)

    Article  Google Scholar 

  26. Saif, M.T.A.: On a tunable bistable MEMS-theory and experiment. Journal of Microelectromechanical Systems 9, 157–170 (2000)

    Article  Google Scholar 

  27. Taylor, G.: The Coalescence of Closely Spaced Drops when they are at Different Electric Potentials. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 306, 423–434 (1968)

    Article  Google Scholar 

  28. Van Kessel, P.F., Hornbeck, L.J., Meier, R.E., Douglass, M.R.: A MEMS-based projection display. Proceedings of the IEEE 86, 1687–1704 (1998)

    Article  Google Scholar 

  29. Vangbo, M.: An analytical analysis of a compressed bistable buckled beam. Sensors and Actuators A: Physical 69, 212–216 (1998)

    Article  Google Scholar 

  30. Vangbo, M., Bcklund, Y.: A lateral symmetrically bistable buckled beam. Journal of Micromechanics and Microengineering 8, 29–32 (1998)

    Article  Google Scholar 

  31. Zhang, Y., Wang, Y., Li, Z., Huang, Y., Li, D.: Journal of Snap-Through and Pull-In Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading Microelectromechanical Systems 16, 684–693 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, K., Batra, R.C. (2010). Instabilites in Arch Shaped MEMS. In: Albers, B. (eds) Continuous Media with Microstructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11445-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11445-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11444-1

  • Online ISBN: 978-3-642-11445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics