Skip to main content

On the Derivation of Biological Tissue Models from Kinetic Models of Multicellular Growing Systems

  • Chapter
Continuous Media with Microstructure

Abstract

This paper deals with the derivation of macroscopic equations for a class of equations modelling complex multicellular systems delivered by the kinetic theory for active particles. The analysis is focused on growing cancer tissues. A critical analysis is proposed to enlighten the technical difficulties generated by dealing with living tissues and to focus the strategy to overcome them by new mathematical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosi, D., Mollica, F.: On the mechanics of a growing tumour. Internat. J. Engrg. Sci. 40, 1297–1316 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumour growth. Math. Models Methods Appl. Sci. 12, 737–754 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arlotti, L., Bellomo, N.: Solution of a new class of nonlinear kinetic models of population dynamics. Appl. Math. Lett. 9, 65–70 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellomo, N., Bellouquid, A.: On the onset of nonlinearity for diffusion models of binary mixtures of biological materials by asymptotic analysis. Internat. J. Non-Linear Mech. 41, 281–293 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellomo, N., Bellouquid, A.: On the derivation of macroscopic tissue equations from hybrid models of the kinetic theory of multicellular growing systems−The effect of global equilibrium. Nonlinear Anal. Hybrid Syst. 3, 215–224 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bellomo, N., Bellouquid, A., Herrero, M.A.: From microscopic to macroscopic description of multicellular systems and biological growing tissues. Comput. Math. Appl. 53, 647–663 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multicellular growing systems: Hyperbolic limits towards macroscopic description. Math. Models Methods Appl. Sci. 17, 1675–1692 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews 5, 183–206 (2008)

    Article  Google Scholar 

  9. Bellomo, N., Delitala, M.: On the coupling of higher and lower scales using the mathematical kinetic theory of active particles. Appl. Math. Lett. 22, 646–650 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bellouquid, A., De Angelis, E.: From Kinetic Models of Multicellular Growing Systems to Macroscopic Biological Tissue Models (submitted)

    Google Scholar 

  11. Bellouquid, A., Delitala, M.: Mathematical models and tools of kinetic theory towards modelling complex biological systems. Math. Models Methods Appl. Sci. 15, 1639–1666 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bellouquid, A., Delitala, M.: Mathematical Modeling of Complex Biological Systems. In: A Kinetic Theory Approach. Birkäuser, Boston (2006)

    Google Scholar 

  13. Bellomo, N., Forni, G.: Complex multicellular systems and immune competition: New paradigms looking for a mathematical theory. Current Topics in Developmental Biology 81, 485–502 (2008)

    Article  Google Scholar 

  14. Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18, 593–646 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chalub, F.A., Markovich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift–diffusion limits. Monatsh. Math. 142, 123–141 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chalub, F.A., Dolak-Struss, Y., Markowich, P., Oeltz, D., Schmeiser, C., Sorefs, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173–1198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chaplain, M.A.J., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. IMA J. Mathematics Applied to Medicine and Biology 23, 197–229 (2003)

    Article  Google Scholar 

  18. Filbet, F., Laurençot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50, 189–207 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goudon, T., Nieto, J., Soler, J., Poupaud, F.: Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system. J. Differential Equations 213, 418–442 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Goudon, T., Sánchez, O., Soler, J., Bonilla, L.L.: Low-field limit for a nonlinear discrete drift-diffusion model arising in semiconductor superlattices theory. SIAM J. Appl. Math. 64, 1526–1549 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hartwell, H.L., Hopfield, J.J., Leibner, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, c47–c52 (1999)

    Article  Google Scholar 

  22. Hillen, T., Othmer, H.: The diffusion limit of transport equations derived from velocity–jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12, 407–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Szymańska, Z., Morale Rodrigo, C., Lachowicz, M., Chaplain, M.A.J.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellomo, N., Bellouquid, A., De Angelis, E. (2010). On the Derivation of Biological Tissue Models from Kinetic Models of Multicellular Growing Systems. In: Albers, B. (eds) Continuous Media with Microstructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11445-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11445-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11444-1

  • Online ISBN: 978-3-642-11445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics