Skip to main content

A Graph Polynomial Arising from Community Structure (Extended Abstract)

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5911))

Included in the following conference series:

  • 1032 Accesses

Abstract

Inspired by the study of community structure in connection networks, we introduce the graph polynomial \(Q\left( G;x,y\right)\), as a bivariate generating function which counts the number of connected components in induced subgraphs. We analyze the features of the new polynomial. First, we re-define it as a subset expansion formula. Second, we give a recursive definition of \(Q\left( G;x,y\right)\) using vertex deletion, vertex contraction and deletion of a vertex together with its neighborhood, and prove a universality property. We relate \(Q\left( G;x,y\right)\) to the universal edge elimination polynomial introduced by I. Averbouch, B. Godlin and J.A. Makowsky (2008), which subsumes other known graph invariants and graph polynomials, among them the Tutte polynomial, the independence and matching polynomials, and the bivariate extension of the chromatic polynomial introduced by K. Dohmen, A. Pönitz, and P. Tittmann (2003). Finally we show that the computation of \(Q\left( G;x,y\right)\) is \(\sharp \mathbf{P}\)-hard, but Fixed Parameter Tractable for graphs of bounded tree-width and clique-width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and Applications 377, 11–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrzejak, A.: Splitting formulas for Tutte polynomials. Journal of Combinatorial Theory, Series B 70(2), 346–366 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. Journal of Combinatorial Theory, Series B 92, 199–233 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Averbouch, I., Godlin, B., Makowsky, J.A.: The most general edge elimination polynomial (2007), http://uk.arxiv.org/pdf/0712.3112.pdf

  5. Averbouch, I., Godlin, B., Makowsky, J.A.: An extension of the bivariate chromatic polynomial (submitted) (2008)

    Google Scholar 

  6. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Bläser, M., Dell, H.: Complexity of the Bollobás-Riordan polynomia. exceptional points and uniform reductions. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 86–98. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In: STACS, pp. 97–108 (2008)

    Google Scholar 

  9. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1999)

    Google Scholar 

  10. Courcelle, B.: Graph Structure and Monadic Second Order Logic. Cambridge University Press, Cambridge (in preparation)

    Google Scholar 

  11. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Courcelle, B., Olariu, S.: Upper bounds to the clique–width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. de Mier, A., Noy, M.: On graphs determined by their Tutte polynomials. Graphs and Combinatorics 20(1), 105–119 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Diestel, R.: Graph Decompositions, A Study in Infinite Graph Theory. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  15. Dohmen, K., Pönitz, A., Tittmann, P.: A new two-variable generalization of the chromatic polynomial. Discrete Mathematics and Theoretical Computer Science 6, 69–90 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Downey, R.G., Fellows, M.F.: Parametrized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  17. Ebbinghaus, H., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  18. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree width and clique-width. Discrete Applied Mathematics 156, 511–529 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Godlin, B., Katz, E., Makowsky, J.A.: Graph polynomials: From recursive definitions to subset expansion formulas (2008), http://uk.arxiv.org/pdf/0812.1364.pdf

  21. Hoffmann, C.: A most general edge elimination polynomial–thickening of edges. arXiv:0801.1600v1 [math.CO] (2008)

    Google Scholar 

  22. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126(1-3), 159–213 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Makowsky, J.A.: Colored Tutte polynomials and Kauffman brackets on graphs of bounded tree width. Disc. Appl. Math. 145(2), 276–290 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Makowsky, J.A.: From a zoo to a zoology: Descriptive complexity for graph polynomials. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 330–341. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Makowsky, J.A.: From a zoo to a zoology: Towards a general theory of graph polynomials. Theory of Computing Systems 43, 542–562 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Makowsky, J.A., Fischer, E.: Linear recurrence relations for graph polynomials. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 266–279. Springer, Heidelberg (2008)

    Google Scholar 

  28. Makowsky, J.A., Rotics, U., Averbouch, I., Godlin, B.: Computing graph polynomials on graphs of bounded clique-width. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 191–204. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J.B. 38, 321–330 (2004)

    Article  Google Scholar 

  30. Newman, M.E.J., Barabasi, A.L., Watts, D.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  31. Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics, Probability and Computing 7, 307–321 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Noy, M.: On graphs determined by polynomial invariants. TCS 307, 365–384 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Noy, M., Ribó, A.: Recursively constructible families of graphs. Advances in Applied Mathematics 32, 350–363 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Oum, S.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Oxley, J.G., Welsh, D.J.A.: The Tutte polynomial and percolation. In: Bundy, J.A., Murty, U.S.R. (eds.) Graph Theory and Related Topics, pp. 329–339. Academic Press, London (1979)

    Google Scholar 

  36. Tittmann, P., Averbouch, I., Makowsky, J.A.: The Enumeration of Vertex Induced Subgraphs with Respect to the Number of Components (2009), http://uk.arxiv.org/pdf/0812.4147.pdf (To appear in the European Journal of Combinatorics, 2010)

  37. Traldi, L.: A subset expansion of the coloured Tutte polynomial. Combinatorics, Probability and Computing 13, 269–275 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Traldi, L.: On the colored Tutte polynomial of a graph of bounded tree-width. Discrete Applied Mathematics 6, 1032–1036 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Averbouch, I., Makowsky, J.A., Tittmann, P. (2010). A Graph Polynomial Arising from Community Structure (Extended Abstract). In: Paul, C., Habib, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2009. Lecture Notes in Computer Science, vol 5911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11409-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11409-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11408-3

  • Online ISBN: 978-3-642-11409-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics