Skip to main content

Domain Decomposition Methods for Electromagnetic Wave Propagation Problems in Heterogeneous Media and Complex Domains

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XIX

Abstract

We are interested here in the numerical modeling of time-harmonic electromagnetic wave propagation problems in irregularly shaped domains and heterogeneous media. In this context, we are naturally led to consider volume discretization methods (i.e. finite element method) as opposed to surface discretization methods (i.e. boundary element method). Most of the related existing work deals with the second order form of the time-harmonic Maxwell equations discretized by a conforming finite element method [14]. More recently, discontinuous Galerkin (DG) methods have also been considered for this purpose. While the DG method keeps almost all the advantages of a conforming finite element method (large spectrum of applications, complex geometries, etc.), the DG method has other nice properties which explain the renewed interest it gains in various domains in scientific computing: easy extension to higher order interpolation (one may increase the degree of the polynomials in the whole mesh as easily as for spectral methods and this can also be done locally), no global mass matrix to invert when solving time-domain systems of partial differential equations using an explicit time discretization scheme, easy handling of complex meshes (the mesh may be a classical conforming finite element mesh, a non-conforming one or even a mesh made of various types of elements), natural treatment of discontinuous solutions and coefficient heterogeneities and nice parallelization properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Alonso-Rodriguez and L. Gerardo-Giorda. New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput., 28(1):102–122, 2006.

    Article  MathSciNet  Google Scholar 

  2. P.R. Amestoy, I.S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods App. Mech. Engng., 184:501–520, 2000.

    Article  MATH  Google Scholar 

  3. P. Chevalier and F. Nataf. An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations. In 10th International Conference on Domain Decomposition Methods in Science and in Engineering, pp.400–407. AMS Boulder, CO, 1997.

    Google Scholar 

  4. B. Després. Décomposition de domaine et problème de Helmholtz. C.R. Acad. Sci. Paris, 1(6):313–316, 1990.

    Google Scholar 

  5. B. Després, P. Joly, and J.E. Roberts. A domain decomposition method for the harmonic Maxwell equations. In Iterative Methods in Linear Algebra, pp. 475–484, North-Holland, Amsterdam, 1992.

    Google Scholar 

  6. V. Dolean, H. Fol, S. Lanteri, and R.Perrussel. Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods. J. Comput. Appl. Math., 218(2):435–445, 2008

    Article  MATH  MathSciNet  Google Scholar 

  7. V.Dolean, L.Gerardo-Giorda, and M.Gander. Optimized Schwarz methods for Maxwell equations. SIAM J. Sci. Comput., 31(3):2193–2213, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Dolean, S.Lanteri, and R. Perrussel. A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. J. Comput. Phys., 227(3):2044–2072, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Dolean, S. Lanteri, and R. Perrussel. Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. IEEE. Trans. Magn., 44(6):954–957, 2008

    Article  Google Scholar 

  10. A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs systems I. General theory. SIAM J. Numer. Anal., 44(2):753–778, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Fezoui, S. Lanteri, S. Lohrengel, and S.Piperno. Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM: Math. Model. Numer. Anal., 39(6): 1149–1176, 2005.

    Article  MathSciNet  Google Scholar 

  12. M. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput., 24(1):38–60, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  13. S.C. Lee, M. Vouvakis, and J.F. Lee. A non-overlaping domain decomposition method with non-matching grids for modeling large finite antenna arrays. J. Comput. Phys., 203:1–21, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Monk. Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, NY, 2003. ISBN 0-19-850888-3.

    Google Scholar 

  15. S. Piperno. L2-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes. M2AN: Math. Model. Numer. Anal., 34(1):139–158, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Ratiu, B. Hillen, J. Glaser, and D.P. Jenkins. Medicine Meets Virtual Reality 11 - NextMed: Health Horizon, volume 11, chapter Visible Human 2.0 – the next generation, pp. 275–281. IOS Press, Fairfax, VA 2003.

    MATH  Google Scholar 

  17. G.L.G. Sleijpen and D.R. Fokkema. BiCGstab\((\ell)\) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal., 1:11–32 (electronic only), 1993.

    MATH  MathSciNet  Google Scholar 

  18. M. Vouvakis, Z. Cendes, and J.F. Lee. A FEM domain decomposition method for photonic and electromagnetic band gap structures. IEEE Trans. Ant. Prop., 54(2):721–733, 2006.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was granted access to the HPC resources of CCRT under the allocation 2009-t2009065004 made by GENCI (Grand Equipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Lanteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dolean, V., Bouajaji, M.E., Gander, M.J., Lanteri, S., Perrussel, R. (2011). Domain Decomposition Methods for Electromagnetic Wave Propagation Problems in Heterogeneous Media and Complex Domains. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11304-8_2

Download citation

Publish with us

Policies and ethics