Skip to main content

More Mathematics into Medicine!

  • Chapter
Production Factor Mathematics
  • 1045 Accesses

Abstract

This article presents three success stories that show how the coaction of mathematics and medicine has pushed a development towards patient specific models on the basis of modern medical imaging and “virtual labs”, which, in the near future, will play an increasingly important role. Thereby the interests of medicine and mathematics seem to be consonant: either discipline wants the results fast and reliably. As for the medical side, this means that the necessary computations must run in shortest possible times on a local PC in the clinics and that their results must be accurate and resilient enough so that they can serve as a basis for medical decisions. As for the mathematical side, this means that highest level requirements for the efficiency of the applied algorithms and the numerical and visualization software have to be met. Yet there is still a long way to go, until anatomically correct and medically useful individual functional models for the essential body parts and for the most frequent diseases will be at hand. This will only be possible, if more mathematics enters into medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colli Franzone, P., Deuflhard, P., Erdmann, B., Lang, J., Pavarino, L.F.: Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28(3), 942–962 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deuflhard, P.: Differential equations in technology and medicine: computational concepts, adaptive algorithms, and virtual labs. In: Burkhard, R., Deuflhard, P., Jameson, A., Lions, J.-L., Strang, G. (eds.) Computational Mathematics Driven by Industrial Problems. Springer Lecture Notes in Mathematics, vol. 1739, pp. 70–125. Springer, Berlin (2000)

    Google Scholar 

  3. Deuflhard, P., Hochmuth, R.: Multiscale analysis of thermoregulation in the human microvasular system. Math. Methods Appl. Sci. 27, 971–989 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deuflhard, P., Weiser, M., Zachow, S.: Mathematics in facial surgery. Not. Am. Math. Soc. 53(9), 1012–1016 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Dössel, O.: Kausalität bei der Entstehung, der Diagnose und der Therapie von Krankheiten – aus dem Blickwinkel des Ingenieurs. Kausalität in der Technik, Berlin-Brandenburg, Akad. Wiss., pp. 69–80 (2006)

    Google Scholar 

  6. Dössel, O., Farina, D., Mohr, M., Reumann, M., Seemann, G.: Modelling and imaging electrophysiology and contraction of the heart. In: Buzug, T.M., Holz, D., Weber, S., Bongartz, J., Kohl-Bareis, M., Hartmann, U. (eds.) Advances in Medical Engineering, pp. 3–16. Springer, Berlin (2007)

    Chapter  Google Scholar 

  7. Henriquez, C.S., Muzikant, A.L., Smoak, C.K.: Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model. J. Cardiovascular Electrophysiol., 424–444 (1996)

    Google Scholar 

  8. Hunter, P.J., Borg, T.K.: Integration from proteins to organs: the Physiome project. Nature Rev., Mol. Cell Biol. 4, 237–243 (2003)

    Article  Google Scholar 

  9. Jonas, P., Louis, A.K.: Phase contrast tomography using holographic measurements. Inverse Probl. 20, 75–102 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kainmüller, D., Lange, Th., Lamecker, H.: Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Heimann, T., Styner, M., van Ginneken, B. (eds.) Proc. MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge, pp. 109–116 (2007)

    Google Scholar 

  11. Khawaja, A., Dössel, O.: Predicting the QRS complex and detecting small changes using principal component analysis. Biomed. Tech., 11–17 (2007)

    Google Scholar 

  12. Louis, A.K.: Medical imaging state of the art and future development. Inverse Probl. 8, 709–738 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Louis, A.K.: Combining image reconstruction and image analysis with an application to two-dimensional tomography. SIAM J. Imaging Sci. 1(2), 188–208 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marr, R.B., Chen, C., Lauterbur, P.C.: On two approaches to 3D reconstruction in NMR zeugmatography. In: Herman, G.T., Natterer, F. (eds.) Mathematical Aspects of Computerized Tomography. Springer LNMI, pp. 225–240. Springer, Berlin (1981)

    Google Scholar 

  15. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  16. Reumann, M., Bohnert, J., Osswald, B., Hagl, S., Dössel, O.: Multiple wavelets, rotos, and snakes in atrial fibrillation—a computer simulation study. J. Electrocardiol., 328–334 (2007)

    Google Scholar 

  17. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974)

    Google Scholar 

  18. Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier, Amsterdam (2005)

    Google Scholar 

  19. Stalling, D., Westerhoff, M., Hege, H.-C., et al.: Amira: a highly interactive system for visual data analysis. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, pp. 749–767 (2005). Chap. 38. URL: amira.zib.de

  20. ten Tusscher, K.H., Panfilov, A.V̇.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Heart Circul. Physiol., 1088–1100 (2006)

    Google Scholar 

  21. Zachow, S.: Computergestützte 3D-Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung. Medizininformatik, Verlag Dr. Hut (2005)

    Google Scholar 

  22. Zachow, S., Hege, H.-C., Deuflhard, P.: Computer assisted planning in cranio-maxillofacial surgery. J. Comput. Inform. Technol., 53–64 (2006). Special Issue on Computer-Based Craniofacial Modelling and Reconstruction

    Google Scholar 

  23. Zachow, S., Zilske, M., Hege, H.-C.: 3D reconstruction of individual anatomy from medical image data. In: Proc. ANSYS Conference & CADFEM Users’ Meeting, Dresden. Siehe auch: Report 07-41, ZIB (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Deuflhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deuflhard, P., Dössel, O., Louis, A.K., Zachow, S. (2010). More Mathematics into Medicine!. In: Grötschel, M., Lucas, K., Mehrmann, V. (eds) Production Factor Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11248-5_19

Download citation

Publish with us

Policies and ethics