Skip to main content

Metabolism and Metabolic Regulation

  • Chapter
  • First Online:
Laron Syndrome - From Man to Mouse

Core Message

The data available on GHR−/− at all ages. Glucose levels, which are very low in young animals, seem to normalize at older ages. Insulin levels remain significantly lower than normal throughout the lifespan of GHR−/− mice. Together, these data suggest that insulin sensitivity decreases only slightly as GHR−/− mice age. In addition, circulating lipid levels tend to be decreased, adding to the scenario of improved metabolic health in GHR−/− mice. However, the need for closer inspection of the age-dependent changes in metabolism in these mice is apparent. Given the age-dependent variation observed in blood glucose levels, it becomes critical to establish the insulin responsiveness of target organs in GHR−/− mice of different ages. Interestingly, data available on liver suggest an insulin-resistant state in older animals. This seems counterintuitive given that whole-body insulin sensitivity is enhanced in GHR−/− mice even at old age. Therefore, it would be interesting to evaluate the insulin responsiveness of the liver in young GHR−/− animals to determine the role of this organ in whole-body insulin sensitivity. Similarly, a thorough characterization of the age-specific degree of insulin sensitivity in skeletal muscle and heart is needed to complement the data that are already available. Furthermore, focus needs to be applied on adipose tissue, given that it is one of the main target organs of insulin and GH action and a key player in metabolic regulation (see Chap. 51).

However, insulin sensitivity is the result of complex metabolic regulation. Other factors, such as PPAR ­isoforms, mainly PPARγ, can also affect insulin ­responsiveness. In the liver, contrary to the low activation ­status of insulin signaling intermediates, PPARγ ­expression is high. Increased activity of this insulin-sensitizing molecule might compensate the apparent inactivity of the insulin signaling cascade, leading to the overall inhibition of glucose production. High PPARα levels leading to increased fatty acid oxidation may contribute to the insulin responsiveness by decreasing lipid levels in the blood. However, the action of PPAR isoforms in tissues such as liver, muscle, and heart is still not clear, and further research is necessary to establish the influence that these molecules have on metabolic regulation.

Interestingly, GHR−/− mice are not resistant to weight gain induced by a high-fat diet, but their glucose and insulin levels remain significantly lower than controls even after the weight gain. On the other hand, soy-derived diets affect lipid and glucose levels differently, with a genotype-specific increase in cholesterol and glucose tolerance only in the high isoflavone diet.

The beneficial effects on insulin sensitivity, in spite of obesity observed in GHR−/− mice, raise interesting questions about the relationship between GH, insulin signaling, and metabolism. These topics are of major concern in today’s world, given the widespread prevalence of obesity, insulin resistance and diabetes. However, the current information is far from enough to answer all the questions. Further research is needed to shed light on the complex mechanisms of metabolic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Regaiey KA, Masternak MM, Bonkowski M, Sun L, Bartke A (2005) Long-lived growth hormone receptor knockout mice: Interaction of reduced insulin-like growth factor i/insulin signaling and caloric restriction. Endocrinology 146(2):851–860

    Article  PubMed  CAS  Google Scholar 

  • Al-Regaiey KA, Masternak MM, Bonkowski MS, Panici JA, Kopchick JJ, Bartke A (2007) Effects of caloric restriction and growth hormone resistance on insulin-related intermediates in the skeletal muscle. J Gerontol A Biol Sci Med Sci 62(1):18–26

    Article  PubMed  Google Scholar 

  • Barbour LA, Mizanoor Rahman S, Gurevich I, Leitner JW, Fischer SJ, Roper MD et al (2005) Increased p85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem 280(45):37489–37494

    Article  PubMed  CAS  Google Scholar 

  • Bartke A, Peluso MR, Moretz N, Wright C, Bonkowski M, Winters TA et al (2004) Effects of soy-derived diets on plasma and liver lipids, glucose tolerance, and longevity in normal, long-lived and short-lived mice. Horm Metab Res 36(8):550–558

    Article  PubMed  CAS  Google Scholar 

  • Bellush LL, Doublier S, Holland AN, Striker LJ, Striker GE, Kopchick JJ (2000) Protection against diabetes-induced nephropathy in growth hormone receptor/binding protein gene-disrupted mice. Endocrinology 141(1):163–168

    Article  PubMed  CAS  Google Scholar 

  • Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, Kopchick JJ (2004) Comparing adiposity profiles in three mouse models with altered gh signaling. Growth Horm IGF Res 14(4):309–318

    Article  PubMed  CAS  Google Scholar 

  • Berryman DE, List EO, Kohn DT, Coschigano KT, Seeley RJ, Kopchick JJ (2006) Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology 147(6):2801–2808

    Article  PubMed  CAS  Google Scholar 

  • Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A (2006) Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A 103(20):7901–7905

    Article  PubMed  CAS  Google Scholar 

  • Bonkowski MS, Dominici FP, Arum O, Rocha JS, Al Regaiey KA, Westbrook R et al (2009) Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLoS ONE 4(2):e4567

    Article  PubMed  Google Scholar 

  • Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin and igf-1 levels and increased lifespan. Endocrinology 144(9):3799–3810

    Article  PubMed  CAS  Google Scholar 

  • del Rincon JP, Iida K, Gaylinn BD, McCurdy CE, Leitner JW, Barbour LA et al (2007) Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: Mechanism for growth hormone-mediated insulin resistance. Diabetes 56(6):1638–1646

    Article  PubMed  Google Scholar 

  • Dominici FP, Arostegui Diaz G, Bartke A, Kopchick JJ, Turyn D (2000) Compensatory alterations of insulin signal transduction in liver of growth hormone receptor knockout mice. J Endocrinol 166(3):579–590

    Article  PubMed  CAS  Google Scholar 

  • Egecioglu E, Bjursell M, Ljungberg A, Dickson SL, Kopchick JJ, Bergstrom G et al (2005) Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity and hypolipidemia in mice. Am J Physiol Endocrinol Metab 290(2):E317–25

    Article  PubMed  Google Scholar 

  • Egecioglu E, Andersson IJ, Bollano E, Palsdottir V, Gabrielsson BG, Kopchick JJ et al (2007) Growth hormone receptor deficiency in mice results in reduced systolic blood pressure and plasma renin, increased aortic enos expression, and altered cardiovascular structure and function. Am J Physiol Endocrinol Metab 292(5):E1418–1425

    Article  PubMed  CAS  Google Scholar 

  • Ferre P (2004) The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes 53(Suppl 1):S43–50

    Article  PubMed  CAS  Google Scholar 

  • Fruchart JC, Staels B, Duriez P (2001) Ppars, metabolic disease and atherosclerosis. Pharmacol Res 44(5):345–352

    Article  PubMed  CAS  Google Scholar 

  • Giani JF, Bonkowski MS, Munoz MC, Masternak MM, Turyn D, Bartke A et al (2008) Insulin signaling cascade in the hearts of long-lived growth hormone receptor knockout mice: Effects of calorie restriction. J Gerontol A Biol Sci Med Sci 63(8):788–797

    Article  PubMed  Google Scholar 

  • Guo Y, Lu Y, Houle D, Robertson K, Tang Z, Kopchick JJ et al (2005) Pancreatic islet-specific expression of an insulin-like growth factor-i transgene compensates islet cell growth in growth hormone receptor gene-deficient mice. Endocrinology 146(6):2602–2609

    Article  PubMed  CAS  Google Scholar 

  • Hauck SJ, Hunter WS, Danilovich N, Kopchick JJ, Bartke A (2001) Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp Biol Med (Maywood) 226(6):552–558

    CAS  Google Scholar 

  • Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al (2001) CREB regulates hepatic gluconeogenesis through the co-activator PGC-1. Nature 413(6852):179–183

    CAS  Google Scholar 

  • Itoh E, Iida K, Kim DS, Del Rincon JP, Coschigano KT, Kopchick JJ et al (2004) Lack of contribution of 11betahsd1 and glucocorticoid action to reduced muscle mass associated with reduced growth hormone action. Growth Horm IGF Res 14(6):462–466

    Article  PubMed  CAS  Google Scholar 

  • Jessen N, Djurhuus CB, Jorgensen JO, Jensen LS, Moller N, Lund S et al (2005) Evidence against a role for insulin-signaling proteins pi 3-kinase and akt in insulin resistance in human skeletal muscle induced by short-term gh infusion. Am J Physiol Endocrinol Metab 288(1):E194–199

    Article  PubMed  CAS  Google Scholar 

  • Kintscher U, Law RE (2005) Ppargamma-mediated insulin sensitization: The importance of fat versus muscle. Am J Physiol Endocrinol Metab 288(2):E287–291

    Article  PubMed  CAS  Google Scholar 

  • Laron Z (2004) Laron syndrome (primary growth hormone resistance or insensitivity): The personal experience 1958–2003. J Clin Endocrinol Metab 89(3):1031–1044

    Article  PubMed  CAS  Google Scholar 

  • Laron Z (2008) The gh-igf1 axis and longevity. The paradigm of igf1 deficiency. Hormones (Athens) 7(1):24–27

    Google Scholar 

  • Laron Z, Avitzur Y, Klinger B (1995) Carbohydrate metabolism in primary growth hormone resistance (laron syndrome) before and during insulin-like growth factor-i treatment. Metabolism 44(10 Suppl 4):113–118

    Article  PubMed  CAS  Google Scholar 

  • Laron Z, Ginsberg S, Webb M (2008) Nonalcoholic fatty liver in patients with laron syndrome and gh gene deletion - preliminary report. Growth Horm IGF Res 18(5):434–438

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ et al (2004) Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 287(3):E405–413

    Article  PubMed  CAS  Google Scholar 

  • Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Bonkowski MS, Panici JA, Przybylski GK et al (2005a) Caloric restriction results in decreased expression of peroxisome proliferator-activated receptor superfamily in muscle of normal and long-lived growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 60(10):1238–1245

    Article  PubMed  Google Scholar 

  • Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS et al (2005b) Effects of caloric restriction on insulin pathway gene expression in the skeletal muscle and liver of normal and long-lived ghr-ko mice. Exp Gerontol 40(8–9):679–684

    Article  PubMed  CAS  Google Scholar 

  • Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS et al (2005c) Effects of caloric restriction and growth hormone resistance on the expression level of peroxisome proliferator-activated receptors superfamily in liver of normal and long-lived growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 60(11):1394–1398

    Article  PubMed  Google Scholar 

  • Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS et al (2006) Caloric restriction and growth hormone receptor knockout: Effects on expression of genes involved in insulin action in the heart. Exp Gerontol 41(4):417–429

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L, Binart N, Bohlooly YM, Bramnert M, Egecioglu E, Kindblom J et al (2005) Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 331(4):1120–1126

    Article  PubMed  CAS  Google Scholar 

  • Robertson K, Kopchick JJ, Liu JL (2006) Growth hormone receptor gene deficiency causes delayed insulin responsiveness in skeletal muscles without affecting compensatory islet cell overgrowth in obese mice. Am J Physiol Endocrinol Metab 291(3):E491–498

    Article  PubMed  CAS  Google Scholar 

  • Rosenbloom AL, Guevara-Aguirre J, Rosenfeld RG, Francke U (1999) Growth hormone receptor deficiency in ecuador. J Clin Endocrinol Metab 84(12):4436–4443

    Article  PubMed  CAS  Google Scholar 

  • Schoonjans K, Martin G, Staels B, Auwerx J (1997) Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 8(3):159–166

    Article  PubMed  CAS  Google Scholar 

  • Stauber AJ, Brown-Borg H, Liu J, Waalkes MP, Laughter A, Staben RA et al (2005) Constitutive expression of peroxisome proliferator-activated receptor alpha-regulated genes in dwarf mice. Mol Pharmacol 67(3):681–694

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama H, Yamada J, Suga T (1994) Effects of testosterone, hypophysectomy and growth hormone treatment on clofibrate induction of peroxisomal beta-oxidation in female rat liver. Biochem Pharmacol 47(5):918–921

    Article  PubMed  CAS  Google Scholar 

  • Venken K, Moverare-Skrtic S, Kopchick JJ, Coschigano KT, Ohlsson C, Boonen S et al (2007) Impact of androgens, growth hormone, and igf-i on bone and muscle in male mice during puberty. J Bone Miner Res 22(1):72–82

    Article  PubMed  CAS  Google Scholar 

  • Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H et al (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Zhou YC, Waxman DJ (1999a) Cross-talk between janus kinase-signal transducer and activator of transcription (jak-stat) and peroxisome proliferator-activated receptor- alpha (pparalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 274(5):2672–2681

    Article  PubMed  CAS  Google Scholar 

  • Zhou YC, Waxman DJ (1999b) Stat5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain. J Biol Chem 274(42): 29874–29882

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M et al (1997) A mammalian model for laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the laron mouse). Proc Natl Acad Sci U S A 94(24):13215–13220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Kopchick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Sackmann-Sala, L., Miles, D.R.B., Kopchick, J.J. (2011). Metabolism and Metabolic Regulation. In: Laron, Z., Kopchick, J. (eds) Laron Syndrome - From Man to Mouse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11183-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11183-9_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11182-2

  • Online ISBN: 978-3-642-11183-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics