Skip to main content

Fractionation in Radiobiology: Classical Concepts and Recent Developments

  • Chapter
  • First Online:
Shaped Beam Radiosurgery
  • 913 Accesses

Abstract

Well-focused radiation treatments such as the one utilizing stereotactic guidance for both benign and malignant tumors have gained significant popularity over the recent decades. Historically, executing the treatment course over several weeks with daily fraction of relatively low dose (termed conventional or standard fractionation) has been established as the norm for major portion of the past century. This has largely been guided by the established quantitative doctrines of clinical or classical radiation biology. However, a new trend has apparently emerged to deliver significantly fewer fractions of treatment (called hypofractionation) or even single-dose irradiation. That one can now seemingly violate the long-held tenet of fractionation radiobiology results largely from the physical advantage of ultra-precision-oriented technology, made possible by more sophisticated computerized treatment planning. Nevertheless, some new biological insights have been offered by recent investigators with renewed quantitative theories, in order to account for the observed clinical efficacy of hypofractionation. The synopsis below aims to present the shifting development in fractionation practice from the classical radiobiology viewpoints, with the emphasis on the evolution of mathematical modeling so pervasive in the clinical application of the biological principles. Readers interested in a more in-depth coverage of the background information are urged to first browse through the author’s earlier review on the subject, which followed a thread of synthesis of central ideas behind quantitative radiobiology (Lee et al. 2006). In order to maintain a self-sufficient amount of information, however, much of the previously presented exposition is summarized and at times included verbatim here for the reader’s convenience. The main addition to the antecedent discussion is the presentation of recent development of theoretical models designed to quantify more accurately the observed efficacy of hypofractionation and thus justify its clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpen EL (1998) Theories and models for cell survival. In: Alpen EL (ed) Radiation biophysics, 2nd edn. Academic Press, San Diego, pp 132–287

    Chapter  Google Scholar 

  • Astrahan M (2008) Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med Phys 35:4161–4172

    Article  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  • Barendsen GW (1982) Dose fractionation, dose rate and isoeffect relationships for normal tissue response. Int J Radiat Oncol Biol Phys 8:1981–1997

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large dose per fraction. Semin Radiat Oncol 18:234–239

    Article  PubMed  Google Scholar 

  • Brenner DJ, Hall EJ (1991) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20:181–190

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Hall EJ (1992) The origins and basis of the linear-quadratic model (Letter). Int J Radiat Oncol Biol Phys 23:252

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Huang Y, Hall EJ (1991) Fractionated high dose-rate versus low dose-rate regimens for intracavitary brachytherapy of the cervix: equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys 21:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Carlone M, Wilkins D, Raaphorst G (2005) The modified linear quadratic model of Guerrero and Li can be derived from mechanistic basis and exhibits linear-quadratic-linear behavior. Phys Med Biol 50:L9–L15

    Article  PubMed  Google Scholar 

  • Coutard H (1932) Roentgen therapy of epitheliomas of the tonsillar region, hypopharynx, and larynx from 1920 to 1926. Am J Roentgenol 28:313–331, and 343–348

    Google Scholar 

  • Curtis SB (1986) Lethal and potentially lethal lesions induced by radiation – a unified repair model. Radiat Res 106: 252–270

    Article  PubMed  CAS  Google Scholar 

  • Ellis F (1967) Fractionation in radiotherapy. In: Deeley TJ, Woods CAP (eds) Modern trends in radiotherapy, vol 1. Butterworths, London, pp 34–51

    Google Scholar 

  • Flickinger JC, Kondziolka D, Lunsford LD (2003) Radiobiological analysis of tissue responses following radiosurgery. Technol Cancer Res Treat 2(2):1–6

    Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF (1992) Intercomparisons of new and old schedules in fractionated radiotherapy. Semin Radiat Oncol 2:67–72

    Article  Google Scholar 

  • Guerrero M, Li X (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49:4825–4835

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (1994) ASTRO Gold Medal: the function of a radiobiologist is to make the clinician think. Int J Radiat Oncol Biol Phys 29:891–892

    Article  Google Scholar 

  • Kavanagh BD, Newman F (2008) Toward a unified survival curve: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852) and Krueger et al. (Int J Radiat Oncol Biol Phys 2007;69:1262–1271). Int J Radiat Oncol Biol Phys 71:958–959

    Article  PubMed  Google Scholar 

  • Kellerer AM, Rossi HH (1972) The theory of dual radiation action. Curr Top Radiat Res 8:85–158

    CAS  Google Scholar 

  • Kirk J, Gray WM, Watson ER (1971) Cumulative radiation effect. Part I. Fractionated treatment regimens. Clin Radiol 22:145–155

    Article  PubMed  CAS  Google Scholar 

  • Kirpatrick JP, Meyer JJ, Marks LB (2008) The linear-quadratic model is inappropriate to model high dose per fraction effects in radiotherapy. Semin Radiat Oncol 18:240–243

    Article  Google Scholar 

  • Lea DE, Catcheside DG (1942) The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J Genet 44:216–245

    Article  Google Scholar 

  • Lee SP, Leu MY, Smathers JB, McBride WH, Parker RG, Withers HR (1995) Biologically effective dose distribution based on the linear quadratic model and its clinical relevance. Int J Radiat Oncol Biol Phys 33:375–389

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, Withers HR, Fowler JF (2006) Radiobiological considerations. In: Slotman BJ, Solberg T, Wurm R (eds) Extracranial stereotactic radiotherapy and radiosurgery. Taylor & Francis, New York, pp 131–176

    Google Scholar 

  • McKenna F, Ahmad S (2009) Toward a unified survival curve: in regard to Kavanagh and Newman (Int J Radiat Oncol Biol Phys 2008;71:958–959) and Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852). Int J Radiat Oncol Biol Phys 73:640

    Article  PubMed  Google Scholar 

  • Oliver R (1964) A comparison of the effects of acute and protracted gamma-radiation on the growth of seedlings of Vicia faba. II. Theoretical calculations. Int J Radiat Biol 8:475–488

    Article  CAS  Google Scholar 

  • Orton CG, Ellis F (1973) A simplification in the use of the NSD concept in practical radiotherapy. Br J Radiol 46:529–537

    Article  PubMed  CAS  Google Scholar 

  • Park C, Papiez L, Zhang S, Story M, Timmerman R (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852

    Article  PubMed  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:653–666

    Article  PubMed  CAS  Google Scholar 

  • Schwarzschild K (1900) On the law of reciprocity for bromide of silver gelatin. Astrophys J 11:89

    Article  Google Scholar 

  • Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228

    Article  PubMed  CAS  Google Scholar 

  • Strandqvist M (1944) Studieren über die kumulative Wirkung der Röntgen-strahlen bei Fraktionierung. Acta Radiol 55(Suppl):1–300

    Google Scholar 

  • Thames HD (1985) An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol 47:319–339

    Article  CAS  Google Scholar 

  • Thames H, Withers H (1980) Test of equal effect per fraction and estimation of initial clonogen number in micro-colony assays of survival after fractionated irradiation. Br J Radiol 53:1071–1077

    Article  PubMed  Google Scholar 

  • Thames HD, Withers HR, Peters LJ, Fletcher GH (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8:219–226

    Article  PubMed  Google Scholar 

  • Timmerman R, Bastasch M, Saha D, Abdulrahman R, Hittson W, Story M (2007) Optimizing dose and fractionation for stereotactic body radiation therapy. In: Meyer JL (ed) IMRT, IGRT, SBRT – Advances in the treatment planning and delivery of radiotherapy, vol 40, Front Radiat Ther Oncol. Karger, Basel, pp 352–365

    Chapter  Google Scholar 

  • Tomé WA (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852). Int J Radiat Oncol Biol Phys 72:1620

    Article  PubMed  Google Scholar 

  • Wang JZ, Mayr NA, Yu WTC (2007) A generalized linear-­quadratic formula for high-dose-rate brachytherapy and radiosurgery. Int J Radiat Oncol Biol Phys 69:S619–S620

    Article  Google Scholar 

  • Withers HR (1975) The 4R’s of radiotherapy. In: Lett JT, Alder H (eds) Advances in radiation biology, vol 5. Academic Press, New York, p 241

    Google Scholar 

  • Withers HR, Peters LJ (1980) Biological aspects of radiation therapy. In: Fletcher GH (ed) Textbook of radiotherapy, 3rd edn. Lea & Febiger, Philadelphia, pp 103–180

    Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1982) Differences in the fractionation response of acute and late responding tissues. In: Karcher KH, Kogelnik HD, Reinartz G (eds) Progress in radio-oncology II. Raven Press, New York, pp 257–296

    Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1:187–191

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27:131–146

    Article  PubMed  CAS  Google Scholar 

  • Yaes RJ, Patel P, Maruyama Y (1991) On using the linear-quadratic model in daily clinical practice. Int J Radiat Oncol Biol Phys 20:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Yaes RJ, Patel P, Maruyama Y (1992) Response to Brenner and Hall (Letter). Int J Radiat Oncol Biol Phys 23:252–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve P. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, S.P. (2011). Fractionation in Radiobiology: Classical Concepts and Recent Developments. In: De Salles, A., et al. Shaped Beam Radiosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11151-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11151-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11150-1

  • Online ISBN: 978-3-642-11151-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics