Skip to main content

Delay Differential Equations

  • Chapter
Mathematics of Biology

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 80))

  • 2722 Accesses

Abstract

The purpose of these lectures is to survey parts of the theory of delay differential equations and functional differential equations that have been used or may be used in the modeling of biological phenomena. In the course of doing so, reference will be made from time to time to specific applications in biology, but primarily to illustrate the mathematical techniques. No attempt will be made to survey comprehensively any particular field in biology, since other lecturers here are doing so. We shall try to begin with elementary concepts of the theory, and yet to present some of the most recent results.

In the first lecture, I shall first indicate a few biological problems that give rise to delay differential equations, and give a large number of references. Then, since some of the audience may have only a slight acquaintance with such equations, I shall sketch their fundamental theory. Standard notations will be introduced and classifications of the equations into types (retarded, neutral, finite or infinite delay, etc.) will be described. Basic existence, uniqueness, continuation, and continuity theorems will be briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W. Alt (1978), Some periodicity criteria for functional differential equations; Manuscripta Math. 23, 295–318.

    Article  MathSciNet  MATH  Google Scholar 

  • C. H. Anderson (1972), The linear differential-difference equation with constant coefficients; J. Math. Ana. Appl. 40, 122–130.

    Article  MATH  Google Scholar 

  • H. T. Banks (1969), The representation of solutions of linear functional differential equations; J. Differential Eqns. 5, 399–410.

    Article  MATH  Google Scholar 

  • H. T. Banks and A. Manitius (1975), Projection series for retarded functional differential equations with applications to optimal control problems; J. Differential Eqns. 18, 296–332.

    Article  MathSciNet  MATH  Google Scholar 

  • H. T. Banks and J. A. Burns (1975), An abstract framework for approximate solutions to optimal control problems governed by hereditary systems; in International Conference on Difference Equations, H. A. Antosiewicz, editor, New York, Academic Press, 10–25.

    Google Scholar 

  • H. T. Banks and J. A. Burns (1976), Projection methods for hereditary systems; in Dynamical Systems, L. Cesari, J. K. Hale, and J. P. LaSalle, editors, New York, Academic Press, Vol. I, 287–290.

    Google Scholar 

  • H. T. Banks and J. M. Mahaffy (1978), Global asymptotic stability of certain models for protein synthesis and repression; Quart. Appl. Math. 36, 209–221.

    MathSciNet  MATH  Google Scholar 

  • H. T. Banks and J. M. Mahaffy (1978), Stability of cyclic gene models for systems involving repression; J. Theor. Biology 74, 323–334.

    Article  MathSciNet  Google Scholar 

  • R. Bellman and K. L. Cooke (1963), Differential-Difference Equations; New York, Academic Press.

    MATH  Google Scholar 

  • J. G. Borisovic and A. S. Turbabin (1969), On the Cauchy problem for linear nonhomogeneous differential equations with retarded argument; Soviet Math. Doklady 10, 401–405.

    Google Scholar 

  • F. Brauer (1977), Stability of population models with delay; Math. Biosciences 33, 345–358.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Busenberg and K. L. Cooke (1978), Periodic solutions of a periodic nonlinear delay differential equation; SIAM J. Appl. Math. 35, 704–721.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Busenberg and K. L. Cooke (1979a), Periodic solutions of delay differential equations arising in some models of epidemics; in Applied Nonlinear Analysis, V. Lakshmikantham, editor, New York, Academic Press, 67–68.

    Google Scholar 

  • S. Busenberg and K. L. Cooke (1979b), The effect of integral conditions in certain equations modelling epidemics and population growth, to appear.

    Google Scholar 

  • L. A. V. Carvalho, E. Infante, and J. A. Walker (n.d.), On quadratic Liapunov functionals and quadratic Razumikhin type functions for linear differential equations with one delay; Preprint.

    Google Scholar 

  • W. B. Castelan and E. F. Infante (1977), On a functional equation arising in the stability of difference-differential equations; Quart. Appl. Math. 35, 311–319.

    MathSciNet  MATH  Google Scholar 

  • S.-N. Chow and J. K. Hale (1978), Periodic solutions of autonomous equations; J. Math. Anal. Appl. 66, 495–506.

    Article  MathSciNet  MATH  Google Scholar 

  • S.-N. Chow and J. Mallet-Paret (1977), Integral averaging and bifurcation; J. Differential Eqns. 26, 112–159.

    Article  MathSciNet  MATH  Google Scholar 

  • K. L. Cooke and J. L. Kaplan (1976), A periodicity threshold theorem for epidemics and population growth; Math. Biosciences 31, 87–104.

    Article  MathSciNet  MATH  Google Scholar 

  • K.L. Cooke (1979), Stability analysis for a vector disease model; Rocky Mountain J. Math. 9, 31–42.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Corduneanu and V. Lakshmikantham (1979), Equations with unbounded delay: a survey; Preprint.

    Google Scholar 

  • K. L. Cooke and J. A. Yorke (1973), Some equations modelling growth processes and gonorrhea epidemics; Math Biosciences 16, 75–101.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Cushing (1976), Periodic solutions of two species interaction models with lags; Math. Biosciences 31, 143–156.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Cushing (1977), Bifurcation of periodic solutions of integrodifferential systems with applications to time delay models in population dynamics; SIAM J. Appl. Math. 33, 640–654.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Cushing (1977), Integrodifferential Equations and Delay Models in Population Dynamics; Lecture Notes in Biomath., Vol, 20, Berlin-Heidelberg-New York, Springer-Verlag.

    MATH  Google Scholar 

  • R. Datko (1972), An algorithm for computing Liapunov functionals for some differential-difference equations; in Ordinary Differential Equations, 1971 NRL-MRC Conference, New York, Academic Press, 387–398.

    Google Scholar 

  • R. Datko (1978), A procedure for determination of the exponential stability of certain differential-difference equations; Quart. Appl. Math, 36, 279–292.

    MathSciNet  MATH  Google Scholar 

  • K. Dietz, L. Molineaux, and A. Thomas (1974), A malaria model tested in the African Savannah; Bull. World Health Org. 50, 347–357.

    Google Scholar 

  • G. M. Dunkel (1968), Single-species model for population growth depending on past history; in Seminar on Differential Equations and Dynamical Systems, Lecture Notes in Mathematics, Berlin-Heidelberg-New York, Springer, Vol. 60, 92–99.

    Chapter  Google Scholar 

  • G. M. Dunkel (1968), Some mathematical models for population growth with lags; Univ. of Maryland Technical Notes BN-548.

    Google Scholar 

  • J. Dyson and R. Villela-Bressan (1975/76), Functional differential equations and nonlinear evolution operators; Proc. Roy Soc. Edinburgh, Vol. 75A, 223–234.

    Google Scholar 

  • L. E. El'sgol'ts and S. B. Norkin (1973), Introduction to the Theory and Application of Differential Equations with Deviating Arguments; New York, Academic Press.

    MATH  Google Scholar 

  • L. Glass and M. Mackey (1977), Oscillation and chaos in physiological control systems; Science 197, 287–289.

    Article  Google Scholar 

  • J. M. Greenberg (1976), Periodic solutions to a population equation; in Dynamical Systems, L. Cesari, J. K. Hale, and J. P. La Salle, editors, New York, Academic Press, Vol. 2, 153–157.

    Google Scholar 

  • S. Grossberg (1967), Nonlinear difference-differential equations in prediction and learning theory; Proc. Nat. Acad. Sci. USA 58, 1329–1334.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Grossberg (1968a), Some nonlinear networks capable of learning a spatial pattern of arbitrary complexity; Proc. Nat. Acad. Sci. USA 59, 368–372.

    Article  MATH  Google Scholar 

  • S. Grossberg (1968b), Global ratio limit theorems for some nonlinear functional differential equations, I, II; Bull. Amer. Math. Soc. 74, 95–99, 100–105.

    Article  MathSciNet  MATH  Google Scholar 

  • Z. Grossman (1978), Oscillatory phenomena in a model of infectious diseases; preprint.

    Google Scholar 

  • Z. Grossman (n.d.), Tumor escape from immune elimination, Weizmann Institute of Science, Rehovot, Israel.

    Google Scholar 

  • A. Halanay (1966), Differential Equations: Stability, Oscillations, Time Lags; New York, Academic Press.

    MATH  Google Scholar 

  • J. K. Hale (1971), Functional Differential Equations; New York, Springer-Verlag.

    MATH  Google Scholar 

  • J. K. Hale (1977), Theory of Functional Differential Equations; New York, Springer-Verlag.

    MATH  Google Scholar 

  • J. K. Hale (1978), Nonlinear oscillations in equations with delays; Brown University, Providence, R.I.

    Google Scholar 

  • J. K. Hale and J. Kato (1978), Phase space for retarded equations with infinite delay; Funcialaj Ekvacioj 21, 11–41.

    MathSciNet  MATH  Google Scholar 

  • J. K. Hale and C. E. Avellar (n.d.), On the zeros of exponential polynomials; J. Math. Anal. Appl., to appear.

    Google Scholar 

  • K. P. Hadeler (1979), Delay equations in biology; in Proc. Summer School and Conference on Functional Differential Equations, Bonn, 1978.

    Google Scholar 

  • K. P. Hadeler (1976), On the stability of the stationary state of a population growth equation with time-lag; J. Math. Biology 3, 197–201.

    Article  MathSciNet  MATH  Google Scholar 

  • K. P. Hadeler and J. Tomiuk (1977), Periodic solutions of difference-differential equations; Archive Rat. Mech. Anal. 65, 87–95.

    Article  MathSciNet  MATH  Google Scholar 

  • K. P. Hadeler (1979), Periodic solutions of x(t) = -f(x(t),x(t-l)); Math. Meth. in Appl. Sci. 1, 62–69.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Hastings (1977), Spatial heterogeneity and the stability of predator-prey systems; Theoretical Population Biology 12, 37–48.

    Article  MathSciNet  Google Scholar 

  • S. P. Hastings (1969), Backward existence and uniqueness for retarded functional differential equations; J. Differential Eqns. 5, 441–451.

    Article  MathSciNet  MATH  Google Scholar 

  • U. ander Heiden (1978), Delay-induced biochemical oscillations; in Bioph. and Biochem. Information Transfer and Recogn. Varna Conference Proceedings, New York, Plenum Press, 533–540.

    Google Scholar 

  • H. W. Hethcote, H. W. Stetih, P. van den Driessche (1979), Nonlinear oscillations in epidemic models; preprint.

    Google Scholar 

  • F. Hoppensteadt (1975), Mathematical Theories of Populations; Demographics, Genetics, and Epidemics; Philadelphia, Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • E. F. Infante and W. B. Castelan (1978), A Liapunov functional for a matrix difference-differential equation; J. Differential Eqns. 29, 439–451.

    Article  MATH  Google Scholar 

  • E. F. Infante and J. A. Walker (1977), A Liapunov functional for a scalar differential-difference equation; Proc. Roy. Soc. Edinburgh 79A, 307–316.

    MathSciNet  Google Scholar 

  • G. S. Jones (1962), The existence of periodic solutions of f'(x) = −αf(x-l) [l+f(x)]; J. Math. Anal. Appl. 5, 435–450.

    Article  MathSciNet  Google Scholar 

  • F. Kappel (1976a), Laplace-transform methods and linear autonomous functional-differential equations; Bericht Nr. 64, Mathematisch-statistischen Sektion in Forschungszentrum Graz. (Austria).

    Google Scholar 

  • Kappel (1976b), A stability criterion for linear autonomous functional differential equations; in Dynamical Systems, L. Cesari, J. K. Hale, and J. P. LaSalle, editors, New York, Academic Press, Vol. 2, 103–107.

    Google Scholar 

  • J. Kaplan and J. A. Yorke (1976), Existence and stability of periodic solutions of ẋ(t) = −f(x(t),x(t−l)); in Dynamical Systems, L. Cesari, J. K. Hale, and J. P. LaSalle, editors, New York, Academic Press, Vol. 2, 137–141.

    Google Scholar 

  • N. D. Kazarinoff, P. van den Driessche, and Y.-H. Wan (1978), Hopf bifurcation and stability of periodic solutions of differential-difference and integro-differential equations; J. Inst. Math. Appl. 21, 461–477.

    Article  MathSciNet  MATH  Google Scholar 

  • N. N. Krasovskii (1959), Stability of Motion; Moscow,Translation by J. Brenner, Stanford University Press, 1963.

    Google Scholar 

  • G. S. Ladde (1976), Stability of model ecosystems with time-delay; J. Theor. Biology 61, 1–13.

    Article  MathSciNet  Google Scholar 

  • A. Leung (1977), Periodic solutions for a prey-predator differential delay equation; J. Differential Equations 26, 391–403.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Leung (1979), Conditions for global stability concerning a prey-predator model with delay effects; SIAM J. Appl. Math. 36, 281–286.

    Article  MathSciNet  MATH  Google Scholar 

  • B. W. Levinger (1968), A folk theorem in functional differential equations; J. Differential Eqns. 4, 612–619.

    Article  MathSciNet  MATH  Google Scholar 

  • N. MacDonald (n.d.,), Cylical neutropenia: models with competitive production of monocytes and granulocytes; preprint.

    Google Scholar 

  • N. MacDonald (1976), Time delay in predator prey models; Math. Biosciences 28, 321–330.

    Article  MathSciNet  MATH  Google Scholar 

  • N. MacDonald (1977), Time delay in prey-predator models — II Bifurcation Theory; Math. Biosciences 33, 227–234.

    Article  MATH  Google Scholar 

  • N. MacDonald (1978), Time Lags in Biological Models; Lecture notes in Biomath., Vol. 27, Berlin-Heidelberg-New York, Springer-Verlag.

    MATH  Google Scholar 

  • J. M. Mahaffy (1980), Periodic solutions for certain protein synthesis models; J, Math. Anal. Appl.; to appear.

    Google Scholar 

  • R. M. May (1973), Time-delay versus stability in population models in two and three trophic levels; Ecology 54, 315–325.

    Article  Google Scholar 

  • M. Martelli, K. Schmitt, and H. Smith (n.d.), Periodic solutions of some nonlinear delay-differential equations; J. Math. Anal. Appl., to appear.

    Google Scholar 

  • C. A. W. McCalla (1976), Exact solutions of some functional differential equations; in Dynamical Systems, L. Cesari, J. K. Hale, and J. P. LaSalle, editors, New York, Academic Press, Vol. 2, 163–168.

    Google Scholar 

  • H. C. Morris (1976), A perturbative approach to periodic solutions of delay-differential equations; J. Inst. Math. Applies. 18, 15–24.

    Article  MATH  Google Scholar 

  • Ju. I. Neimark (1973), D-decomposition of the space of quasi-polynomials (On the stability of linearized distribitive systems; Amer. Math. Soc. Translations, Ser. 2, Vol. 102, 95–131. (Translation of Akad. Nauk. SSSR Prikl. Mat. Meh. (1949), Vol. 14, 349–380).

    Google Scholar 

  • R. D. Nussbaum (1974), Periodic solutions of some nonlinear autonomous functional differential equations; Annali di Mat. Pura Appl. (IV) 101, 263–306.

    Article  MathSciNet  MATH  Google Scholar 

  • R. D. Nussbaum (1978), A periodicity threshold theorem for some nonlinear integral equations; SIAM J. Math. Anal. 9, 356–376.

    Article  MathSciNet  MATH  Google Scholar 

  • H.-O. Peitgen (1977), On continua of periodic solutions for functional differential equations; Rocky Mountain Math. J. 7, 609–617.

    Article  MathSciNet  MATH  Google Scholar 

  • J. F. Perez, C. P. Malta, and E. A. B. Continho (1978), Qualitative analysis of oscillations in isolated populations of flies; J. Theoret. Biology 71, 505–514.

    Article  Google Scholar 

  • I. M. Repin (1965), Quadratic Liapunov functionals for systems with delays; Prikl. Mat. Mech. 29, 564–566.

    MathSciNet  Google Scholar 

  • S. I. Rubinow and J. L. Lebowitz (1975), A mathematical model for neutrophil production and control in normal man; J. Math. Bioloby 1, 187–225.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Schumacher (1978), Existence and continuous dependence for functional-differential equations with unbounded delay; Archive Rat. Mech. Anal. 67, 315–335.

    Article  MathSciNet  MATH  Google Scholar 

  • G. Seifert (1973), Liapunov-Razumihin conditions for stability and boundedness of functional differential equations of Volterra type; J. Differential Eqns. 14, 424–430.

    Article  MathSciNet  MATH  Google Scholar 

  • G. Seifert (1974), Liapunov-Razumihin conditions for asymptotic stability in functional differential equations of Volterra type; J. Differential Eqns. 16, 289–297.

    Article  MathSciNet  MATH  Google Scholar 

  • H. L. Smith (1977), On periodic solutions of delay integral equations modelling epidemics; J. Math. Biology 4, 69–80.

    Article  MATH  Google Scholar 

  • R. A. Silkowski (1976), Star-shaped regions of stability in hereditary systems; Thesis, Brown University, Providence, R.I.

    Google Scholar 

  • A. Somolinos (1978), Periodic solutions of the sunflower equation; Quart. Appl. Math. 35, 465–478.

    MathSciNet  MATH  Google Scholar 

  • H. W. Stech (1978), The effect of time lags on the stability of the equilibrium state of a population growth equation; J. Math. Bioloby 5, 115–120.

    MathSciNet  MATH  Google Scholar 

  • H. W. Stech (1979), The Hop bifurcation: a stability result and application; preprint.

    Google Scholar 

  • C. C. Travis and G. F. Webb (1974), Existence and stability for partial functional differential equations; Trans. Amer. Math. Soc. 200, 395–418.

    Article  MathSciNet  MATH  Google Scholar 

  • C. C. Travis and G. F. Webb (1976), Partial differential equations with deviating arguments in the time variable; J. Math. Anal. Appl. 56, 397–409.

    Article  MathSciNet  MATH  Google Scholar 

  • C. C. Travis and G. F. Webb (1978), Existence, stability, and compactness in the a-norm for partial functional differential equations; Trans. Amer. Math. Soc. 240, 129–143.

    MathSciNet  MATH  Google Scholar 

  • J. A. Walker (1976), On the application of Liapunov's direct method to linear dynamical systems; J. Math. Anal. Appl. 53, 187–220.

    Article  MathSciNet  MATH  Google Scholar 

  • H.-O. Walther (1974/75), Asymptotic stability for some functional differential equations; Proc. Roy. Soc. Edinburgh 74A, 253–255.

    MathSciNet  Google Scholar 

  • H.-O. Walther (1975a), Existence of a non-constant periodic solution of a nonlinear autonomous functional differential equation representing the growth of a single species -opulation; J. Math. Biology 1, 227–240.

    Article  MathSciNet  MATH  Google Scholar 

  • H.-O. Walther (1975b), Stability of attractivity regions for autonomous functional differential equations; Manuscripta Math. 15, 349–363.

    Article  MathSciNet  MATH  Google Scholar 

  • H.-O. Walther (1976), On a transcendental equation in the stability analysis of a population growth model; J. Math. Biology 3, 187–195.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Waltman and E. Butz (1977), A threshold model of antigen-antibody dynamics; J. Theor. Biology 65, 499–512.

    Article  MathSciNet  Google Scholar 

  • G. F. Webb (1976), Linear functional differential equations with L2 initial functions; Funkcialaj Ekvocioj 19, 65–77.

    MATH  Google Scholar 

  • G. F. Webb (n.d.), Functional differential equations and nonlinear semigroups in LP spaces; J. Differential Eqns., to appear.

    Google Scholar 

  • T. E. Wheldon (1975), Mathematical models of oscillatory blood cell production; Math. Biosciences 24, 289–305.

    Article  MATH  Google Scholar 

  • T. Yoshizawa (1966), Stability Theory by Liapunov's Second Method; Math. Soc. Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mimmo Iannelli

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooke, K.L. (2010). Delay Differential Equations. In: Iannelli, M. (eds) Mathematics of Biology. C.I.M.E. Summer Schools, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11069-6_1

Download citation

Publish with us

Policies and ethics