Skip to main content

Finite Dimensional Representation of Functional Data with Applications

  • Conference paper
  • First Online:
Classification as a Tool for Research

Abstract

Most algorithms in statistics are designed to work with vectors of small or moderate dimension, and the performance of these algorithms decreases when dealing with very high dimensional data as functional data are. In this work we propose a functional analysis technique to obtain appropriate finite-dimensional representations of functional data for pattern recognition purposes. To this aim, we project the available functional data samples onto finite dimensional function spaces generated by the eigenfunctions of suitable Mercer kernels. We demonstrate some theoretical properties of the proposed method and the advantages of the proposed representations in several tasks using simulated and real functional data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aroszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337–404.

    MathSciNet  Google Scholar 

  • Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J.-F., Vincent, P., & Ouimet, M. (2004). Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16, 2197–2219.

    Article  MATH  Google Scholar 

  • Chen, Z., & Haykin, S. (2002). On different facets of regularization theory. Neural Computation, 14, 2791–2846.

    Article  MATH  Google Scholar 

  • Cox, D., & O’Sullivan, F. (2004). Asymptotic analysis and penalized likelihood and related estimators. Annals of Statistics, 18, 1676–1695.

    Article  MathSciNet  Google Scholar 

  • Cucker, F., & Smale, S. (2002). On the mathematical foundations of learning. Bulletin of the American Mathematical Society, 39(1), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty, F., & Vieu, P. (2003). Curves discrimination: A nonparametric functional approach. Computational Statistics & Data Analysis, 44, 161–173.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P., & Vial, C. (2006). Assessing the finite dimensionality of functional data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(4), 689–705.

    Article  MATH  MathSciNet  Google Scholar 

  • James, G. M., & Sugar, C. A. (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association, 98.

    Google Scholar 

  • Kimeldorf, G. S., & Wahba, G. (1971). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 2, 495–502.

    MathSciNet  Google Scholar 

  • Marx, B., & Eilers, P. (1999). Generalized linear regression on sampled signals and curves: A P-spline approach. Technometrics 41, 113.

    Article  MathSciNet  Google Scholar 

  • Moguerza, J. M., & Muõz, A. (2006). Support vector machines with applications. Statistical Science, 21(3), 322–357.

    Article  MathSciNet  Google Scholar 

  • Rakotomamonjy, A., & Canu, S. (2005). Frames, reproducing kernels, regularization and learning. Journal of Machine Learning Research 6, 1485–1515.

    MathSciNet  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2006). Functional data analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Rossi, F., & Villa, N. (2006). Support vector machine for functional data classification. Neurocomputing 69, 730–742.

    Article  Google Scholar 

  • Schlesinger, S. (1957). Approximating eigenvalues and eigenfunctions of symmetric kernels. Journal of the Society for Industrial and Applied Mathematics, 6(1), 1–14.

    Article  Google Scholar 

  • Schölkopf, B., Herbrich, R., Smola, A. J., & Williamson, R. C. (2001). A generalized representer theorem. Lecture Notes in Artificial Intelligence, 2111, 416–426, Springer.

    Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. Series in Applied Mathematics, 59, Philadelphia: SIAM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muñoz, A., González, J. (2010). Finite Dimensional Representation of Functional Data with Applications. In: Locarek-Junge, H., Weihs, C. (eds) Classification as a Tool for Research. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10745-0_16

Download citation

Publish with us

Policies and ethics