Skip to main content

Isotopic Composition and Accurate Mass

  • Chapter
  • First Online:
Mass Spectrometry

Abstract

In the context of general chemistry we rarely pay attention to the different isotopes of the individual elements involved in a reaction. For instance, the molecular mass of tribromomethane, CHBr3, is usually calculated as 252.73 g mol−1 on the basis of relative atomic mass from the Periodic Table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Laeter, J.R.; De Bièvre, P.; Peiser, H.S. Isotope Mass Spectrometry in Metrology. Mass Spectrom. Rev. 1992, 11, 193–245.

    Article  Google Scholar 

  2. Audi, G. The History of Nuclidic Masses and of Their Evaluation. Int. J. Mass Spectrom. 2006, 251, 85–94.

    Article  CAS  Google Scholar 

  3. Budzikiewicz, H.; Grigsby, R.D. Mass Spectrometry and Isotopes: A Century of Research and Discussion. Mass Spectrom. Rev. 2006, 25, 146–157.

    Article  CAS  Google Scholar 

  4. Todd, J.F.J. Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int. J. Mass Spectrom. Ion. Proc. 1995, 142, 211–240.

    Article  CAS  Google Scholar 

  5. McLafferty, F.W.; Turecek, F. Interpretation of Mass Spectra; 4th ed.; University Science Books: Mill Valley, 1993.

    Google Scholar 

  6. Sparkman, O.D. Mass Spec Desk Reference; Global View Publ: Pittsburgh, 2000.

    Google Scholar 

  7. IUPAC Isotopic Composition of the Elements 1997. Pure Appl. Chem. 1998, 70, 217–235.

    Google Scholar 

  8. IUPAC; Coplen, T.P. Atomic Weights of the Elements 1999. Pure Appl. Chem. 2001, 73, 667–683.

    Google Scholar 

  9. Price, P. Standard Definitions of Terms Relating to Mass Spectrometry. A Report From the Committee on Measurements and Standards of the Amercian Society for Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1991, 2, 336–348.

    Article  CAS  Google Scholar 

  10. Busch, K.L. Units in Mass Spectrometry. Spectroscopy 2001, 16, 28–31.

    CAS  Google Scholar 

  11. Platzner, I.T. Applications of Isotope Ratio Mass Spectrometry, in Modern Isotope Ratio Mass Spectrometry; Wiley: Chichester, 1997; pp. 403–447.

    Google Scholar 

  12. Ferrer, I.; Thurman, E.M. Measuring the Mass of an Electron by LC/TOF-MS: A Study of "Twin Ions". Anal. Chem. 2005, 77, 3394–3400.

    Article  CAS  Google Scholar 

  13. Ferrer, I.; Thurman, E.M. Importance of the Electron Mass in the Calculations of Exact Mass by Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2538–2539.

    Article  CAS  Google Scholar 

  14. Schmidt, H.L. Food Quality Control and Studies on Human Nutrition by Mass Spectrometric and Nuclear Magnetic Resonance Isotope Ratio Determination. Fresenius' Zeitschrift für Analytische Chemie 1986, 324, 760–766.

    Article  CAS  Google Scholar 

  15. Beavis, R.C. Chemical Mass of Carbon in Proteins. Anal. Chem. 1993, 65, 496–497.

    Article  CAS  Google Scholar 

  16. Carle, R. Isotopen-Massenspektrometrie: Grundlagen Und Anwendungsmöglichkeiten. Chem. Unserer Zeit 1991, 20, 75–82.

    CAS  Google Scholar 

  17. Förstel, H. The Natural Fingerprint of Stable Isotopes - Use of IRMS to Test Food Authenticity. Anal. BioAnal. Chem. 2007, 388, 541–544.

    Article  Google Scholar 

  18. Busch, K.L. Isotopes and Mass Spectrometry. Spectroscopy 1997, 12, 22–26.

    Google Scholar 

  19. Beynon, J.H. The Compilation of a Table of Mass and Abundance Values, in Mass spectrometry and its applications to organic chemistry; Elsevier:Amsterdam, 1960; Chapter 8.3, pp. 294–302.

    Google Scholar 

  20. McLafferty, F.W.; Turecek, F. Interpretation of Mass Spectra; 4th ed.; University Science Books: Mill Valley, 1993.

    Google Scholar 

  21. Margrave, J.L.; Polansky, R.B. Relative Abundance Calculations for Isotopic Molecular Species. J. Chem. Educ. 1962, 335–337.

    Google Scholar 

  22. Yergey, J.A. A General Approach to Calculating Isotopic Distributions for Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1983, 52, 337–349.

    Article  CAS  Google Scholar 

  23. Hsu, C.S. Diophantine Approach to Isotopic Abundance Calculations. Anal. Chem. 1984, 56, 1356–1361.

    Article  CAS  Google Scholar 

  24. Kubinyi, H. Calculation of Isotope Distributions in Mass Spectrometry. A Trivial Solution for a Non-Trivial Problem. Anal. Chim. Acta 1991, 247, 107–119.

    Article  CAS  Google Scholar 

  25. Frauenkron, M.; Berkessel, A.; Gross, J.H. Analysis of Ruthenium Carbonyl- Porphyrin Complexes: a Comparison of Matrix-Assisted Laser Desorption/ Ionization Time-of-Flight, Fast- Atom Bombardment and Field Desorption Mass Spectrometry. Eur. Mass Spectrom. 1997, 3, 427–438.

    Article  CAS  Google Scholar 

  26. Giesa, S.; Gross, J.H.; Hull, W.E.; Lebedkin, S.; Gromov, A.; Krätschmer, W.; Gleiter, R. C120OS: the First Sulfur- Containing Dimeric [60]Fullerene Derivative. Chem. Commun. 1999, 465–466.

    Article  CAS  Google Scholar 

  27. Luffer, D.R.; Schram, K.H. Electron Ionization Mass Spectrometry of SynReferences 115 thetic C60. Rapid Commun. Mass Spectrom. 1990, 4, 552–556.

    Article  CAS  Google Scholar 

  28. Srivastava, S.K.; Saunders, W. Ionization of C60 (Buckminsterfullerene) by Electron Impact. Rapid Commun. Mass Spectrom. 1993, 7, 610–613.

    Article  CAS  Google Scholar 

  29. Scheier, P.; Dünser, B.; Märk, T.D. Production and Stability of Multiply- Charged C60. Electrochem. Soc. Proc. 1995, 95-10, 1378–1394.

    CAS  Google Scholar 

  30. Thomas, A.F. Deuterium Labeling in Organic Chemistry; Appleton-Century- Crofts: New York, 1971.

    Google Scholar 

  31. Kaltashov, I.A.; Eyles, S.J. Mass Spectrometry in Biophysics: Conformation and Dynamics of Biomolecules; Wiley: Hoboken, 2005.

    Book  Google Scholar 

  32. Balogh, M.P. Debating Resolution and Mass Accuracy in Mass Spectrometry. Spectroscopy 2004, 19, 34–38,40.

    CAS  Google Scholar 

  33. Bristow, A.W.T. Accurate Mass Measurement for the Determination of Elemental Formula - a Tutorial. Mass Spectrometry Reviews 2006, 25, 99–111.

    Article  CAS  Google Scholar 

  34. Leslie, A.D.; Volmer, D.A. Dealing With the Masses: a Tutorial on Accurate Masses, Mass Uncertainties, and Mass Defects. Spectroscopy 2007, 22, 32,34–32,39.

    CAS  Google Scholar 

  35. Busch, K.L. The Resurgence of Exact Mass Measurement With FTMS. Spectroscopy 2000, 15, 22–27.

    Google Scholar 

  36. Beynon, J.H. Qualitative Analysis of Organic Compounds by Mass Spectrometry. Nature 1954, 174, 735–737.

    Article  CAS  Google Scholar 

  37. Pomerantz, S.C.; McCloskey, J.A. Fractional Mass Values of Large Molecules. Org. Mass Spectrom. 1987, 22, 251–253.

    Article  CAS  Google Scholar 

  38. Boyd, R.K.; Basic, C.; Bethem, R.A. Trace Quantitative Analysis by Mass Spectrometry; Wiley: Chichester, 2008.

    Chapter  Google Scholar 

  39. Kilburn, K.D.; Lewis, P.H.; Underwood, J.G.; Evans, S.; Holmes, J.; Dean, M. Quality of Mass and Intensity Measurements From a High Performance Mass Spectrometer. Anal. Chem. 1979, 51, 1420–1425.

    Article  CAS  Google Scholar 

  40. Sack, T.M.; Lapp, R.L.; Gross, M.L.; Kimble, B.J. A Method for the Statistical Evaluation of Accurate Mass Measurement Quality. Int. J. Mass Spectrom. Ion Proc. 1984, 61, 191–213.

    Article  CAS  Google Scholar 

  41. Kim, S.; Rodgers, R.P.; Marshall, A.G. Truly "Exact" Mass: Elemental Composition Can Be Determined Uniquely From Molecular Mass Measurement at Approximately 0.1 mDa Accuracy for Molecules up to Approximately 500 Da. Int. J. Mass Spectrom. 2006, 251, 260–265.

    Article  CAS  Google Scholar 

  42. Zubarev, R.A.; Demirev, P.A.; Håkansson, P.; Sundqvist, B.U.R. Approaches and Limits for Accurate Mass Characterization of Large Biomolecules. Anal. Chem. 1995, 67, 3793–3798.

    Article  CAS  Google Scholar 

  43. Zubarev, R.A.; Håkansson, P.; Sundqvist, B. Accuracy Requirements for Peptide Characterization by Monoisotopic Molecular Mass Measurements. Anal. Chem. 1996, 68, 4060–4063.

    Article  CAS  Google Scholar 

  44. Clauser, K.R.; Baker, P.; Burlingame, A. Role of Accurate Mass Measurement (±10 Ppm) in Protein Identification Strategies Employing MS or MS/MS and Database Searching. Anal. Chem. 1999, 71, 2871–2882.

    Article  CAS  Google Scholar 

  45. Spengler, B. De Novo Sequencing, Peptide Composition Analysis, and Composition- Based Sequencing: a New Strategy Employing Accurate Mass Determination by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 703–714.

    Article  CAS  Google Scholar 

  46. Roussis, S.G.; Proulx, R. Reduction of Chemical Formulas From the Isotopic Peak Distributions of High-Resolution Mass Spectra. Anal. Chem. 2003, 75, 1470–1482.

    Article  CAS  Google Scholar 

  47. Stoll, N.; Schmidt, E.; Thurow, K. Isotope Pattern Evaluation for the Reduction of Elemental Compositions Assigned to High-Resolution Mass Spectral Data From Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1692–1699.

    Article  CAS  Google Scholar 

  48. Marshall, A.G.; Hendrickson, C.L.; Shi, S.D.H. Scaling MS Plateaus With High- Resolution FT-ICR-MS. Anal. Chem. 2002, 74, 252A–259A.

    Article  CAS  Google Scholar 

  49. Busch, K.L. Masses in Mass Spectrometry: Balancing the Analytical Scales. Spectroscopy 2004, 19, 32–34.

    CAS  Google Scholar 

  50. Busch, K.L. Masses in Mass Spectrometry: Perfluors and More. Part II. Spectroscopy 2005, 20, 76–81.

    CAS  Google Scholar 

  51. Bristow, A.W.T.; Webb, K.S. Intercomparison Study on Accurate Mass Measurement of Small Molecules in Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 1086–1098. 116 3 Isotopic Composition and Accurate Mass

    Article  CAS  Google Scholar 

  52. Gross, M.L. Accurate Masses for Structure Confirmation. J. Am. Soc. Mass Spectrom. 1994, 5, Editorial.

    Google Scholar 

  53. Lehmann, W.D.; Bohne, A.; von der Lieth, C.W. The Information Encrypted in Accurate Peptide Masses-Improved Protein Identification and Assistance in Glycopeptide Identification and Characterization. J. Mass Spectrom. 2000, 35, 1335–1341.

    Article  CAS  Google Scholar 

  54. Kendrick, E. Mass Scale Based on CH2 = 14.0000 for High-Resolution Mass Spectrometry of Organic Compounds. Anal. Chem. 1963, 35, 2146–2154.

    Article  CAS  Google Scholar 

  55. Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Anal. Chem. 2001, 73, 4676–4681.

    Article  CAS  Google Scholar 

  56. Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2001,15, 1186–1193.

    Article  CAS  Google Scholar 

  57. van Krevelen, D.W. Graphical-Statistical Method for the Study of Structure and Reaction Processes of Coal. Fuel 1950,29, 269–284.

    Google Scholar 

  58. Wu, Z.; Rodgers, R.P.; Marshall, A.G. Two- and Three-Dimensional Van Krevelen Diagrams: A Graphical Analysis Complementary to the Kendrick Mass Plot for Sorting Elemental Compositions of Complex Organic Mixtures Based on Ultrahigh-Resolution Broadband Fourier Transform Ion Cyclotron Resonance Mass Measurements. Anal. Chem. 2004, 76, 2511–2516.

    Article  CAS  Google Scholar 

  59. Kim, S.; Kramer, R.W.; Hatcher, P.G. Graphical Method for Analysis of Ultrahigh- Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram. Anal. Chem. 2003, 75, 5336–5344.

    Article  CAS  Google Scholar 

  60. Hertkorn, N.; Benner, R.; Frommberger, M.; Schmitt-Kopplin, P.; Witt, M.; Kaiser, K.; Kettrup, A.; Hedges, J.I. Characterization of a Major Refractory Component of Marine Dissolved Organic Matter. Geochimica et Cosmochimica Acta 2006, 70, 2990–3010.

    Article  CAS  Google Scholar 

  61. Dittmar, T.; Koch, B.P. Thermogenic Organic Matter Dissolved in the Abyssal Ocean. Marine Chemistry 2006, 102, 208–217.

    Article  CAS  Google Scholar 

  62. Koch, B.P.; Dittmar, T. From Mass to Structure: an Aromaticity Index for High-Resolution Mass Data of Natural Organic Matter. Rapid Commun. Mass Spectrom. 2005, 20, 926–932.

    Article  Google Scholar 

  63. Yergey, J.; Heller, D.; Hansen, G.; Cotter, R.J.; Fenselau, C. Isotopic Distributions in Mass Spectra of Large Molecules. Anal. Chem. 1983, 55, 353–356.

    Article  CAS  Google Scholar 

  64. Werlen, R.C. Effect of Resolution on the Shape of Mass Spectra of Proteins: Some Theoretical Considerations. Rapid Commun. Mass Spectrom. 1994, 8, 976–980.

    Article  CAS  Google Scholar 

  65. Solouki, T.; Emmet, M.R.; Guan, S.; Marshall, A.G. Detection, Number, and Sequence Location of Sulfur-Containing Amino Acids and Disulfide Bridges in Peptides by Ultrahigh-Resolution MALDI-FTICR Mass Spectrometry. Anal. Chem. 1997, 69, 1163–1168.

    Article  CAS  Google Scholar 

  66. Matsuo, T.; Sakurai, T.; Ito, H.; Wada, Y. "High Masses". Int. J. Mass Spectrom. Ion Proc. 1991, 118/119, 635–659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen H. Gross .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2011). Isotopic Composition and Accurate Mass. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10711-5_3

Download citation

Publish with us

Policies and ethics